Advertisement

International Journal of Thermophysics

, Volume 16, Issue 1, pp 145–153 | Cite as

The viscosity of liquid carbon dioxide

  • P. S. van der Gulik
  • M. El Kharraz
Article

Abstract

The viscosity coellicient of carbon dioxide in the liquid phase has been measured by means of a vibrating-wire viscometer at temperatures of 220, 230, 240, 2411, 260, and 380 K. The measurements extended beyond both phase transition lines into the coexistence region (superheated liquid) and into the solid range (undercooled liquid). At 3811 K. the measurements extended only to 3511 MPa since no density data are available for high pressures. The accuracy of the measurements is estimated to be I % The agreement with the data of Ulybin and Makarushkin is rather good, but our values are in general a few percent lower than those of Diller and Ball. The results show, for the most part, a linear pressure dependence for the various isotherms, with a common intersection with the negative pressure axis of 113.7 MPa. The fluidity, the reciprocal of the viscosity, shows a linear dependence of the molar volume in adjacent density ranges. After reduction of the molar volume with the volumes of close packing, two sets of linear functions result, with common intersections of the axis forV/V0=1.31 andV/V0=1.40.

Key words

carbon dioxide high pressure low temperature liquid viscosity coellicient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. van der Waals Jr.,Proc. Kon. Akad. Wetensch. Amsterdam 21:743, 1283 (1919).Google Scholar
  2. 2.
    L. Brillouin,J. Phys. (Paris) 3:326 (1922).Google Scholar
  3. 3.
    N. da C. Andrade,Phil. Mag. 17:497, 698 (1934).Google Scholar
  4. 4.
    J. D. van der Waals Sr.. Doctoral dissertation (Leiden. 1873).Google Scholar
  5. 5.
    R. Mostert, P. S. van der Gulik, and H. R. van den Berg.Physica A 156:909 (1989).Google Scholar
  6. 6.
    P. S. van der Gulik, inExperimental Thermodynamics, Vol. III. Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (IUPAC, Blackwell Scientific, London, 1991). p. 79.Google Scholar
  7. 7.
    J. F. Ely. J. W. Magee, and W. M. Haynes.Thermophysical Properties lor Special High CO 2 Content Mixtures, GPA Research Report RRI 110 of Project 839. Part I (1987).Google Scholar
  8. 8.
    P. S. van der Gulik, R. Mostert and H. R. van den Berg,High Temp. High Press. 23:87 (1991).Google Scholar
  9. 9.
    D. E. Diller and M. J. Ball,Int. J. Thermophys. 6:619 (1985).Google Scholar
  10. 10.
    S. A. Ulybin and V. I. Makarushkin,Therm Eng. 23:65 (1976).Google Scholar
  11. 11.
    P. S. van der Gulik, R. Mostert, and H. R. van den Berg.Physica A 151:153 (1988).Google Scholar
  12. 12.
    P. S. van der Gulik, R. Mostert, and H. R. van den Berg,Fluid Phase Equil. 79:301 (1992).Google Scholar
  13. 13.
    P. S. van der Gulik and N. J. Trappeniers,Physica A 135:1 (1986).Google Scholar
  14. 14.
    V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, I. T. R. Watson, and J. Millat.J. Phys. Chem. Ref. Data 19:761 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. S. van der Gulik
    • 1
  • M. El Kharraz
    • 1
  1. 1.Van der Waals-Zeeinan LaboratoryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations