International Journal of Thermophysics

, Volume 16, Issue 3, pp 619–628

Experimental study of phase transitions in mercury

  • V. F. Kozhevnikov
  • D. I. Arnold
  • S. P. Naurzakov
Article
  • 54 Downloads

Abstract

The results of sound velocity measurements in mercury, performed at temperatures from 300 up to 2(150 K and pressures from 30 up to 1900 bar by a precise pulsed phase-sensitive technique for a frequency of 10 MHz, are presented. The explored range of state parameters includes liquid and gaseous phases, the coexistence curve up to the critical point, and the supercritical region. The data obtained indicate the existence of two first-order phase transitions in mercury that take place in the vapor near saturation and in the supercritical fluid. The positions of the critical points of these transitions were estimated. An interpretation of the observed phenomena is given: It leads to the new approach to the nature of the critical point of liquid-gas transition in mercury. It is shown also that the fourth derivative of the thermodynamic potential of mercury has a special feature in the metal-nonmetal transition region.

Key words

clusters critical point mercury metal-nonmetal transition phase transition sound velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Landau and I. Zeldovich.Acta Phys. Chem. USSR 18:1940 (1943).Google Scholar
  2. 2.
    N. Mott.Metal-Insulator Transitions (Taylor & Francis, London, 1974).Google Scholar
  3. 3.
    F. Hensel and E. U. Frank.Ber. Bunsenges. Phys. Chem. 70:1154 (1966).Google Scholar
  4. 4.
    I. K. Kikoin and A. P. Senchenkov,Fizika Metallor i Metallovedenie 24:843 (1967) (in Russian).Google Scholar
  5. 5.
    W. Gotzlaff, G. Shonherr. and F. Hensel.Z. Phys. Chem. N.F. 156:219 (1988): W. Gotzlaff, Thesis (Marburg University, Marburg, 1988).Google Scholar
  6. 6.
    U. Even and J. Jortner,Phys. Rev. Lett. 28:31 (1972).Google Scholar
  7. 7.
    W. W. Warren, Jr., and F. Hensel,Phys. Rev. B 26:5980 (1982).Google Scholar
  8. 8.
    M. Yao, W. Hayami, and H. Endo.J. Non-Crustall. Solids 117/118:473 (1990).Google Scholar
  9. 9.
    I. K. Kikoin, A. P. Senchenkov, S. P. Naurzakov. and E. B. Gelman. Preprint IAE-3310. Moscow ( 1973).Google Scholar
  10. 10.
    V. F. Kozhevnikov,Zh. Eksp. Teor. Fiz. 97:541 (1990) [transl. Sov. Phys. JETF,70:298 (1990]: V. F. Kozhevnikov, S. P. Naurzakov, and A. P. Senchenkov,J. Moscow Phys. Soc. 1:171 (1991).Google Scholar
  11. 11.
    L. J. Duckers and R. G. Ross.Phys. Lett. A38:291 (1972).Google Scholar
  12. 12.
    F. E. Neale and N. E. Cusack,J. Phys. F Metal Phys. 9:85 (1979).Google Scholar
  13. 13.
    W. Hefner and F. Hensel,Phys. Rev. Lett. 48:1026 (1982).Google Scholar
  14. 14.
    M. Yao, H. Uchtmann. and F. Hensel,Surface Sci. 157:456 (1985).Google Scholar
  15. 15.
    H. Uchtmann, U. Brusius, M. Yao, and F. Hensel,Z. Phys. Chem. N.F. 156:151 (1988).Google Scholar
  16. 16.
    A. Likalter.Uspekhi Fiz. Nauk 162:119 (1992) (in Russian).Google Scholar
  17. 17.
    G. E. Norman and N. Starostin,Teplofiz. Vysokih Temp. 8:413 (1970) (in Russian).Google Scholar
  18. 18.
    L. A. Turkevich and M. H. Cohen,J. Phys. Chem. 88:3751 (1984).Google Scholar
  19. 19.
    K. Suzuki, M. Unitake, and S. Fujiwaka,IPPJ-310 (Institute of Plasma Physics. Nagoya University, Nagoya. Japan, 1977): K. Suzuki. M. Unitake. S. Fujiwaka, M. Yao, and H. Endo.J. Phys. Paris 41:C8–70 (1980).Google Scholar
  20. 20.
    H. A. Spetzler. M. D. Meyer, and Tin Chan.High Temp.-High Press.7:481 (1975).Google Scholar
  21. 21.
    M. Hensel. Thesis (University of Marburg. Marburg, 1993).Google Scholar
  22. 22.
    D. I. Arnold, A. M. Gordeenko, P. N. Ermilov, V. F. Kozhevnikov, and S. P. Naurzakov,Prih. Tekh. Exsp. No. 5, 143 (1985) (in Russian).Google Scholar
  23. 23.
    N. B. Vargaltik, V. F. Kozhevnikov, A. M. Gordeenko, D. I. Arnold, and S. P. Naurzakov,Int. J. Thermophys. 7:821 (1986).Google Scholar
  24. 24.
    H. McSkimin,Physical Acoustics—Principles and Methods Vol. 1A, W. P. Mason. ed. (Academic Press, New York, 1964).Google Scholar
  25. 25.
    V. F. Kozhevnikov, D. I. Arnold, and S. P. Naurzakov,J. Phys. Condenced Matter 6:A249 (1994).Google Scholar
  26. 26.
    V. F. Kozhevnikov, S. P. Naurzakov, and D. I. Arnold.J. Moscow Phys. Soc. 3:191 (1993).Google Scholar
  27. 27.
    C. W. Garland. inPhysical Acoustics—Principles and Methods, Vol. VII W. P. Mason and R. N. Thurnston, eds. (Academic Press, New York, 1970).Google Scholar
  28. 28.
    L. D. Landau and E. M. Lifshitz.Hydrodynamics (Nauka. Moscow, 1986), p.355.Google Scholar
  29. 29.
    W. W. Warren. Jr., and F. Hensel,Phys. Rev. B 26:5990 (1982).Google Scholar
  30. 30.
    J. Thoen. E. Vangleel, and W. Van Dael.Physica,45:339 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. F. Kozhevnikov
    • 1
  • D. I. Arnold
    • 2
  • S. P. Naurzakov
    • 2
  1. 1.Moscow Aviation InstituteMoscowRussia
  2. 2.Russian Research Centre “Kurchatov InsituteMoscowRussia

Personalised recommendations