Reactive scattering of sodium clusters with molecular oxygen

  • Alexander Goerke
  • Gregor Leipelt
  • Hartmut Palm
  • C. P. Schulz
  • I. V. Hertel
Article

Abstract

The first reactive differential scattering study for atomic clusters is reported. Oxidation of Nax (x≦8) with O2 is investigated in a crossed beam apparatus. Sodium oxide (NanO,n≦4) and sodium dioxide (NanO2,n≦6) are produced with a total reactive cross section from 50 to 80 Å2, depending on the cluster size. The excess energies for these reactions are estimated by an SCF type ab initio calculation and range from 0.5 to 5 eV. The large cross section may then be understood quantitatively in terms of a harpooning mechanism as a first step in the reaction path. Angular distributions have been determined for the most abundant products, showing strong forward scattering. Two different schemes are discussed for the reaction: while the dioxides NanO2 may be formed by an evaporative cooling process from a highly excited collision complex, formation of NanO appears to originate from a direct process. In both cases the experimental data suggest that most of the exothermicity remains in the reaction products.

PACS

82.30.Nr 36.40. + d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Heer, W.A., Knight, W.D., Chou, M.Y., Cohen, M.L.: Solid State Phys.40, 93 (1987)Google Scholar
  2. 2.
    Wang, C.R., Pollack, S., Kappes, M.M.: Chem. Phys. Lett.166, 26 (1990)Google Scholar
  3. 3.
    Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y., Cohen, M.L.: Phys. Rev. Lett.52, 2141 (1984)Google Scholar
  4. 4.
    Martin, T.P., Bergmann, T., Göhlich, H., Lange, T.: Chem. Phys. Lett.172, 209 (1990)Google Scholar
  5. 5.
    Riley, S.J., Parks, E.K., Pobo, L.G., Wexler, S.: Ber. Bunsenges. Phys. Chem.88, 287 (1984)Google Scholar
  6. 6.
    Trevor, D.J., Whetten, R.L., Cox, D.M., Kaldor, A.: J. Am. Chem. Soc.107, 518 (1985)Google Scholar
  7. 7.
    Jarrold, M.F.: In: Bimolecular collisions, Ashfold, M.N.R., Baggott, J.E. (eds.). London: Royal Soc. Chem. (1989)Google Scholar
  8. 8.
    Peterson, K.I., Dao, P.D., Castleman, A.W. Jr.: J. Chem. Phys.79, 777 (1983)Google Scholar
  9. 9.
    Dao, P.D., Peterson, K.I., Castleman, A.W.: J. Chem. Phys.80, 563 (1984)Google Scholar
  10. 10.
    Lange, T., Göhlich, H., Näher, U., Martin, T.P.: Chem. Phys. Lett.192, 544 (1992)Google Scholar
  11. 11.
    Herschbach, D.R.: Faraday Discuss.33, 149 (1962); Birely, J.H., Hermn, R.R., Wilson, K.R., Herschbach, D.R.: J. Chem. Phys.47, 993 (1967); Miller, W.B., Safran, S.A., Herschbach, D.R.: Faraday Discuss.44, 108 (1967)Google Scholar
  12. 12.
    Goerke, A., Palm, H., Schulz, C.P., Spiegelmann, F., Hertel, I.V.: J. Chem. Phys.98, 9635 (1993)Google Scholar
  13. 13.
    Kappes, M.M., Schär, M., Röthlisberger, U., Yeretzian, C., Schumacher, E.: Chem. Phys. Lett.143, 251 (1988)Google Scholar
  14. 14.
    Dudourd, Ph., Rayane, D., Labastie, P., Pintar, B., Chevaleyre, J., Broyer, M., Wöste, L., Wolf, J.P.: J. Phys. IV C7, 509 (1991)Google Scholar
  15. 15.
    Bréchingnac, C., Cahuzac, Ph., Roux, J.Ph., Pavolini, D., Spiegelmann, F.: J. Chem. Phys.87, 5694 (1987)Google Scholar
  16. 16.
    Poteau, R., Spiegelmann, F.: Phys. Rev. B45, 1878 (1992)Google Scholar
  17. 17.
    Langhoff, S.R., Partrigde, H., Bauschlicher, C.W. Jr.: Chem. Phys.153, 1 (1991)Google Scholar
  18. 18.
    Schleyer, P.v.R., Würthwein, E.-U., Pople, J.A.: J. Am. Chem. Soc.104, 5839 (1982); Schleyer, P.v.R., Würthwein, E.-U., Kaufmann, E., Clark, T., Pople, J.A.: J. Am. Chem. Soc.105, 5930 (1983); Würthwein, E.-U., Schleyer, P.v.R., Pople, J.A.: J. Am. Chem. Soc.106, 6973 (1984)Google Scholar
  19. 19.
    Häser, M., Ahlrichs, R.: J. Comput. Chem.10, 104 (1989); Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Chem. Phys. Lett.162, xx (1989)Google Scholar
  20. 20.
    Huzinaga, S.: Approximate atomic functions I, II. Alberta: University of Alberta (1971)Google Scholar
  21. 21.
    Magee, J.L.: J. Chem. Phys.8, 687 (1940)Google Scholar
  22. 22.
    Celotta, R.L., Bennet, R.A., Hall, J.L., Siegel, M.W., Levine, J.: Phys. Rev. A6, 631 (1972)Google Scholar
  23. 23.
    Goerke, A.: Dissertation, Albert-Ludwigs-Universität Freiburg (1993)Google Scholar
  24. 24.
    We have also measured the total scattering cross section by looking at depletion of the Nax intensity in the cluster beam after passing a gas cell. A preliminary evaluation of the data for O2 and N2 have shown, that the reactive part (as determined by the difference between the O2 and the N2 total cross section) are in the same range (50 to 120 Å2).Google Scholar
  25. 25.
    See e.g. Levine, R.D., Bernstein, R.B.: Molecular reaction dynamics and chemical reactivity. Oxford, New York: (1987)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Alexander Goerke
    • 1
  • Gregor Leipelt
    • 1
  • Hartmut Palm
    • 1
  • C. P. Schulz
    • 1
  • I. V. Hertel
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  2. 2.Info Process GmbHBuchenbachGermany
  3. 3.L.P.C.R., Bât. 350, Université Paris-SudOrsay CedexFrance

Personalised recommendations