Structural rigidity and low frequency vibrational modes of long carbon tubules

  • G. Overney
  • W. Zhong
  • D. Tománek
Article

Abstract

We have studied the low frequency vibrational modes and the structural rigidity of long graphitic carbon tubules consisting of 100, 200, and 400 atoms. Our calculations have been performed using an empirical Keating Hamiltonian with parameters determined from first principles. We have found the “beam bending” mode to be one of the softest modes in these structures. The corresponding beam rigity of a “bucky tube” is compared to an found to exceed the highest values found in presently available materials.

PACS

36.40.+d 81.20.Sh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Nature347, 354 (1990)CrossRefGoogle Scholar
  2. 2.
    Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E.: Nature318, 162 (1985)Google Scholar
  3. 3.
    Sumio Iijima: Nature354, 56 (1991); Sumio Iijima, Toshinari Ichihashi, Yoshinori Ando: Nature356, 767 (1992)Google Scholar
  4. 4.
    Ball, Philip: Nature354, 18 (1991)Google Scholar
  5. 5.
    Bacon, R.: In: Proceedings of the Cambridge Conference on Strength of Whiskers and Thin Films (1958)Google Scholar
  6. 6.
    Mintmire, J.W., Dunlap, B.I., White, C.T.: Phys. Rev. Lett.68, 631 (1992); Hamada, N., Sawada, S.-I., Oshiyama, A.: Phys. Rev. Lett.68, 1579 (1992); Kikuo Harigaya: Phys. Rev. B45, 12071 (1992); Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Phys. Rev. B46, 1804 (1992); Tanaka, K., Okahara, K., Okada, M., Yamabe, T.: Chem. Phys. Lett.191, 469 (1992)Google Scholar
  7. 7.
    Ross, Philip E.: Scientific American, December 1991, p. 24Google Scholar
  8. 8.
    Fowler, P.W., Cremona, J.E., Steer, J.I.: Theor. Chim. Acta73, 1 (1988)Google Scholar
  9. 9.
    Keating, P.N.: Phys. Rev.145, 637 (1966)Google Scholar
  10. 10.
    Kane, E.O.: Phys. Rev. B31, 7865 (1985)Google Scholar
  11. 11.
    Jones, R.: J. Phys. C20, L271 (1987)Google Scholar
  12. 12.
    Schlüter, M., Lannoo, M., Needels, M., Baraff, G.A., Tománek, D.: Phys. Rev. Lett.68, 526 (1992). The phonon modes of the C60 solid are based on the Keating potential and force constants of (1) and Table 1 in this publicationGoogle Scholar
  13. 13.
    Wooten, F., Weaire, D.: Solid State Phys.40, 2 (1987)Google Scholar
  14. 14.
    Hohenberg, P., Kohn, W.: Phys. Rev.136, B864 (1964); Kohn, W., Sham, L.J.: Phys. Rev.140, A1133 (1965)Google Scholar
  15. 15.
    Overney, G., Tománek, D., Zhong, W., Sun, Z., Miyazaki, H., Mahanti, S.D., Güntherodt, H.-J.: J. Phys.4, 4233 (1992)Google Scholar
  16. 16.
    Hamann, D.R., Schlüter, M., Chiang, C.: Phys. Rev. Lett.43, 1494 (1979)Google Scholar
  17. 17.
    The vibrational modes of graphite are explained in: Dresselhaus, M.S., Dresselhaus, G.: Adv. Phys.30, 139 (1981)Google Scholar
  18. 18.
    Onida, G., Benedek, G.: Europhys. Lett.18, 403 (1992); ibid19, 343 (1992) (E)Google Scholar
  19. 19.
    Sarid, D.: Scanning force microscopy, Oxford Series in Optical and Imaging Sciences, pp. 1–7. Oxford: Oxford University Press 1991; Landau, L.D., Lifshitz, E.M.: Theory of elasticity, p. 81. New York: Pergamon Press 1986; Cook, R.D., Young, W.C.: Advanced mechanics of materials, p. 258. New York: Macmillan 1985Google Scholar
  20. 20.
    The larger radius would appear as more appropriate when comparing Ir with multi-walled carbon tubules, where an atomic volume and density can be reasonably definedGoogle Scholar
  21. 21.
    [3]; Ebbesen, T.W., Ajayan, P.M.: Nature358, 220 (1992); Ugarte, D.: Nature359, 707 (1992)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. Overney
    • 1
  • W. Zhong
    • 1
  • D. Tománek
    • 1
  1. 1.Department of Physics and Astronomy, and Center for Fundamental Materials ResearchMichigan State UniversityEast LansingUSA

Personalised recommendations