Advertisement

Numerische Mathematik

, Volume 20, Issue 3, pp 179–192 | Cite as

The finite element method with Lagrangian multipliers

  • Ivo Babuška
Article

Summary

The Dirichlet problem for second order differential equations is chosen as a model problem to show how the finite element method may be implemented to avoid difficulty in fulfilling essential (stable) boundary conditions. The implementation is based on the application of Lagrangian multiplier. The rate of convergence is proved.

Keywords

Boundary Condition Differential Equation Finite Element Method Mathematical Method Lagrangian Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška, I.: The stability of the domain of definition with respect to basic problems of the theory of partial differential equations, especially with respect to the theory of elasticity I, II. Czechoslovak Math. J. 76–105, 165–203 (1961).Google Scholar
  2. 2.
    Babuška, I.: Numerical solution of boundary value problems by perturbed variational principle. Technical Note BN-627 (1969), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.Google Scholar
  3. 3.
    Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing5, 207–213 (1970).Google Scholar
  4. 4.
    Babuška, I.: Approximation by Hill functions. Commentations Math. Univ. Carolinae,11, 387–811 (1970).Google Scholar
  5. 5.
    Babuška, I.: Finite element method for domains with corners. Computing6, 264–273 (1970).Google Scholar
  6. 6.
    Babuška, I.: The finite element method for elliptic differential equations. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (69–107).Google Scholar
  7. 7.
    Babuška, I.: A remark to the finite element method. Commentations Math. Univ. Carolinae12, 367–376 (1971).Google Scholar
  8. 8.
    Babuška, I.: The rate of convergence for the finite element method. SIAM J. Num. Anal.8, 304–315 (1971).Google Scholar
  9. 9.
    Babuška, I.: Error bound for finite element method. Num. Math.16, 322–333 (1971).Google Scholar
  10. 10.
    Babuška, I.: Finite element method with penalty. Technical Note BN-710 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.Google Scholar
  11. 11.
    Babuška, I.: Approximation by Hill functions II. Technical Note BN-708 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.Google Scholar
  12. 12.
    Babuška, I.: The finite element method for infinite domains I. Technical Note BN-670 (1970), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland. To appear in Math of Comp.Google Scholar
  13. 13.
    Babuška, I., Rosenzweig, M. B.: A finite element scheme for domains with corners. Technical Note BN-720 (1971), Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.Google Scholar
  14. 14.
    Bramble, J. H., Schatz, A. H.: On the numerical solution of elliptic boundary value problems by least square approximation of the data. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (107–133).Google Scholar
  15. 15.
    Bramble, J. H., Zlámal, M.: Triangular elements in the finite element method. Math. of Comp. 809–821 (1970).Google Scholar
  16. 16.
    Fix, G., Strang, G.: A Fourier analysis of the finite element variational method. To appear.Google Scholar
  17. 17.
    Gallagher, R. H.: Trends and directions in the applications of Numerical analysis. ONR Symposium on numerical and computer methods in structural mechanics, University of Ill., September 8–10, 1971.Google Scholar
  18. 18.
    Nitsche, J.: Über Variationsprinzip für Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. To appear.Google Scholar
  19. 19.
    Elsgolc, L. E.: Calculus of variations. London, Paris, Frankfurt: Pergamon Press 1961.Google Scholar
  20. 20.
    Krein, S. G., Petunin, Yu I.: Scales of Banach spaces. Russian Math. Surveys21, 85–160 (1966).Google Scholar
  21. 21.
    Lions, J. L., Magenes, E.: Problèmès aux limites non homogènes et applications. Vol. 1, Paris: Dunod 1968.Google Scholar
  22. 22.
    Rashid, Y. R.: On computational methods in solid mechanics and stress analysis. Conf. on the effective use of computers in the nuclear industry, April 21–23, 1969, Knoxville.Google Scholar
  23. 23.
    Slobodeckii, M. I.: Generalized Sobolev spaces and their applications to boundary problems for partial differential equations. Am. Math. Soc. Transl.21, 207–275 (1966).Google Scholar
  24. 24.
    Strang, G.: The finite element method and approximation theory. Numerical solution of partial differential equations II. SYNSPADE 1970, edited by B. Hubbard. New York, London: Academic Press 1971 (547–585).Google Scholar
  25. 25.
    Washizu, K.: Variational methods in elasticity and plasticity. Pergamon Press 1968.Google Scholar
  26. 26.
    Zlámal, M.: On the finite element method. Numer. Math.12, 394–409 (1968).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Ivo Babuška
    • 1
  1. 1.Institut for Fluid Dynamic and Applied MathematicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations