Numerische Mathematik

, Volume 17, Issue 3, pp 203–214 | Cite as

Projection method for solving a singular system of linear equations and its applications

  • Kunio Tanabe
Article

Summary

The iterative method for solving system of linear equations, due to Kaczmarz [2], is investigated. It is shown that the method works well for both singular and non-singular systems and it determines the affine space formed by the solutions if they exist. The method also provides an iterative procedure for computing a generalized inverse of a matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forsythe, G. E.: Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.59, 299–329 (1953).Google Scholar
  2. 2.
    Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Acad. Polon. Sciences et Lettres, A, 355–357 (1937).Google Scholar
  3. 3.
    Nagasaka, H.: Error propagation in the solution of tridiagonal linear equations. Information Processing in Japan5, 38–44 (1965).Google Scholar
  4. 4.
    Penrose, R.: A generalized inverse for matrices. Proc. Cambr. Phil. Soc.51, 406–413, (1955).Google Scholar
  5. 5.
    Robinson, D.W.: On the generalized inverse of an arbitrary linear transformation. Amer. Math. Monthly69, 412–416 (1962).Google Scholar
  6. 6.
    Rosen, J. B.: The gradient projection method for nonlinear programming. Part II, nonlinear constraints. J. Soc. Indust. Appl. Math.9, no. 4 514–532 (1961).Google Scholar
  7. 7.
    Tanabe, K.: An algorithm for the constrained maximization in nonlinear programming, Research Memorandum No. 31, The Institute of Statistical Mathematics, 1969.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Kunio Tanabe
    • 1
  1. 1.The Institute of Statistical MathematicsTokyoJapan

Personalised recommendations