, Volume 91, Issue 1–3, pp 183–198 | Cite as

Two-dimensional protein electrophoretic analysis of postponed aging inDrosophila

  • James E. Fleming
  • Greg S. Spicer
  • Roger C. Garrison
  • Michael R. Rose


Five populations ofDrosophila melanogaster that had been selected for postponed aging were compared with five control populations using two-dimensional protein gel electrophoresis. The goals of the study were to identify specific proteins associated with postponed aging and to survey the population genetics of the response to selection. A total of 321 proteins were resolvable per population; these proteins were scored according to their intensity. The resulting data were analyzed using resampling, combinatoric, and maximum parsimony methods. The analysis indicated that the populations with postponed aging were different from their controls with respect to specific proteins and with respect to the variation between populations. The populations selected for postponed aging were more heterogeneous between populations than were the control populations. Maximum parsimony trees separate the selected populations, as a group, from their controls, thereby exhibiting a homoplastic pattern.

Key words

aging Drosophila electrophoresis evolution longevity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. G., & N. L. Anderson, 1978. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal. Biochem. 85: 331–340.PubMedGoogle Scholar
  2. Aquadro, C. F. & J. C. Avise, 1981. Genetic divergence between rodent species assessed by using two-dimensional electrophoresis. Proc. Natl. Acad. Sci. 78: 3784–3788.PubMedGoogle Scholar
  3. Bozcuk, A. N., 1981. Genetic longevity inDrosophila. V. The specific and hybridized effect ofrolled, sepia, ebony andeyeless autosomal mutants. Exp. Gerontol. 11: 103–112.Google Scholar
  4. Clare, M. J. & L. S. Luckinbill, 1985. The effects of geneenvironment interaction on the expression of longevity. Heredity 55: 19–29.PubMedGoogle Scholar
  5. Dice, L. R., 1941. Measures of the amount of ecologic association between species. Ecology 26: 297–302.Google Scholar
  6. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  7. Fleming, J. E., P. S. Melnikoff & K. G. Bensch, 1984. Identification of mitochondrial proteins on two-dimensional electrophoresis gels of extracts of adultDrosophila melanogaster. Biochim. Biophys. Acta 802: 340–345.Google Scholar
  8. Fleming, J. E., E. Quaottrocki, G. Latter, J. Miquel, R. Marcuson, E. Zuckerkandl & K. G. Bensch, 1986. Age-dependent changes in proteins ofDrosophila melanogaster. Science 231: 1157–1159.PubMedGoogle Scholar
  9. Fleming, J. E., J. K. Walton, R. Dubitsky & K. G. Bensch, 1988. Aging results in an unusual expression ofDrosophila heat shock proteins. Proc. Nat. Acad. Sci. USA 85: 4099–4103.PubMedGoogle Scholar
  10. Garrels, J., 1979. Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254: 7961–7977.PubMedGoogle Scholar
  11. Hendy, M. D. & D. Penny, 1982. Branch and bound algorithms to determine minimal evolutionary trees. Math. Biosci. 59: 277–290.Google Scholar
  12. Hutchinson, E. W. & M. R. Rose, 1987. Genetics of aging in insects. Rev. Biol. Res. Aging 3: 62–70.Google Scholar
  13. Hutchinson, E. W. & M. R. Rose, 1990. Quantitative genetic analysis of postponed aging inDrosophila melanogaster, p. 66–87 in Genetic effects on aging II, edited by D. A. Harrison. Telford, Caldwell, N.J.Google Scholar
  14. Hutchinson, E. W. & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosophila melanogaster I. Analysis of outbred populations. Genetics 127: 719–727.PubMedGoogle Scholar
  15. Ives, P. T., 1970. Further studies of the South Amherst population ofDrosophila melanogaster. Evolution 24: 507–518.Google Scholar
  16. Johnson, T. E., 1987. Aging can be genetically dissected into component processes using long-lived lines ofCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA 84: 3777–3781.PubMedGoogle Scholar
  17. Johnson, T. E. & E. W. Hutchinson, 1990. Aging inCaenorhabditis elegans: Update 1988. Rev. Biol. Res. Aging 4: 15–27.Google Scholar
  18. Luckinbill, L. S., M. J. Clare, W. L. Krell, W. C. Cirocco & S. A. Buck, 1987. Estimating the number of genetic elements that defer senescence inDrosophila melanogaster. Evolution 38: 996–1003.Google Scholar
  19. Luckinbill, L. S., T. A. Grudzien, S. Rhine & G. Weisman, 1989. The genetic basis of adaptation to selection for longevity inDrosophila melanogaster. Evol. Ecology 3: 31–39.Google Scholar
  20. Luckinbill, L. S., J. L. Graves, A. H. Reed & S. Koetsawang, 1988a. Localizing the genes that defer senescence inDrosophila. Heredity 60: 367–374.PubMedGoogle Scholar
  21. Luckinbill, L. S., J. L. Graves, A. Tomkiw & O. Sowirka, 1988b. A qualitative analysis of some life-history correlates of longevity inDrosophila melanogaster. Evol. Ecol. 2: 85–94.Google Scholar
  22. Maynard Smith, J., 1966. Theories of aging, p. 1–35 in Topics in the biology of aging, edited by P. L. Krohn. Interscience, New York.Google Scholar
  23. Margush, T. & F. R. McMorris, 1981. Consensus n-trees. Bull. Math. Biol. 43: 239–244.Google Scholar
  24. Nei, M., 1972. Genetic distances between populations. Am. Nat. 106: 283–292.Google Scholar
  25. O'Farrell, P. H., 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  26. Ohnishi, S., M. Kawanishi & T. I. Watanabe, 1983. Biochemic phylogenies ofDrosophila: protein differences detected by two-dimensional electrohoresis. Genetica 61: 55–63.Google Scholar
  27. Parker, J., J. Flanagan, J. Murphy & J. Gallant, 1981. On the accuracy of protein synthesis inDrosophila melanogaster. Mech. Age. Dev. 16: 127–139.Google Scholar
  28. Rohlf, F. J., 1990. NTSYS-pc. Numerical taxonomy and multivariate analysis system (ver. 1.60). Exeter Pub., Setauket, New York.Google Scholar
  29. Rose, M. R., 1984. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.Google Scholar
  30. Rose, M. R., 1989. Genetics of increased lifespan inDrosophila. Bioessays 11: 132–135.PubMedGoogle Scholar
  31. Rose, M. R., 1991. Evolutionary biology of aging. Oxford University Press, New York.Google Scholar
  32. Rose, M. R. & B. Charlesworth, 1981. Genetics of life-history inDrosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187–196.PubMedGoogle Scholar
  33. Rose, M. R., M. L. Dorey, A. M. Coyle & P. M. Service, 1984. The morphology of postponed senescence inDrosophila melanogaster. Can. J. Zool. 62: 1576–1580.Google Scholar
  34. Sanderson, M. J., 1989. Confidence limits on phylogenies: the bootstrap revisited. Cladistics 5: 113–129.Google Scholar
  35. Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 58: 380–389.Google Scholar
  36. Service, P. M., 1987. Physiological mechanisms of increased stress resistance inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 60: 321–326.Google Scholar
  37. Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy. W. H. Freeman and Co., San Francisco.Google Scholar
  38. Sokal R. R. & P. H. A. Sneath, 1963. Principles of numerical taxonomy. W. H. Freeman and Co., San Francisco.Google Scholar
  39. Swofford, D. L., 1990. PAUP. Phylogenetic analysis using parsimony (ver. 3. On). Ill. Nat. Hist. Surv., Champaign, Illinois.Google Scholar
  40. Swofford, D. L. & W. P. Maddison, 1987. Reconstructing ancestral character states under wagner parsimony. Math. Biosci. 87: 199–229.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • James E. Fleming
    • 1
    • 3
  • Greg S. Spicer
    • 1
    • 3
  • Roger C. Garrison
    • 2
    • 3
  • Michael R. Rose
    • 2
    • 3
  1. 1.Linus Pauling Institute of Science and MedicinePalo AltoUSA
  2. 2.Institute of Molecular Medical SciencesPalo AltoUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations