Genetica

, Volume 91, Issue 1–3, pp 143–149

The effect of superoxide dismutase alleles on aging inDrosophila

  • Robert H. Tyler
  • Hardip Brar
  • Meena Singh
  • Amparo Latorre
  • Joseph L. Graves
  • Laurence D. Mueller
  • Michael R. Rose
  • Francisco J. Ayala
Article

Abstract

The effects of superoxide dismutase on aging were tested using two differt experimental approaches. In the first, replicated populations with postponed aging were compared with their controls for frequencies of electrophoretic alleles at the SOD locus. Populations with postponed aging had consistently greater frequencies of the allele coding for more active SOD protein. This allele was not part of a segregating inversion polymorphism. The second experimental approach was the extraction ofSOD alleles from different natural populations followed by the construction of differentSOD genotypes on hybrid genetic backgrounds. This procedure did not uncover any statistical effect ofSOD genotype on hybrid genetic backgrounds. This effects on longevity and fecundity due to the family from which a particularSOD genotype was derived. To detect the effects ofSOD genotypes on longevity with high probability would require a ten-fold increase in the number of families used.

Key words

superoxide dismutase aging Drosophila evolutionary genetics senescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F. J., J. R. Powell, M. L. Tracey, C. A. Mourao & S. Perez-Sala, 1972. Enzyme variability in theDrosophila willistoni group. IV. Genic variation in natural populations ofDrosophila willistont. Genetics 70: 113–139.PubMedGoogle Scholar
  2. Graves, J. L. & M. R. Rose, 1990. Flight duration inDrosophila melanogaster selected for postponed senescence, pp. 59–65 in Genetic effects on aging. II, edited by D. E. Harrison. Telford Press, Caldwell, N.J.Google Scholar
  3. Graves, J. L., E. C. Toolson, C. Jeong, L. N. Vu & M. R. Rose 1992. Desiccation, flight, glycogen, and postoned senescence inDrosophila melanogaster. Phys. Zool. 65: 268–286.Google Scholar
  4. Harman, D., 1956. Aging—a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300.PubMedGoogle Scholar
  5. Hutchinson, E. W. & M. R. Rose, 1987. Genetics of aging in insects. Rev. Biol. Res. Aging 3: 63–70.Google Scholar
  6. Hutchinson, E. W. & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosphila melanogaster. I. Analysis of outbred populations. Genetics 127:719–727.PubMedGoogle Scholar
  7. Lee, Y. M., H. P. Misra & F. J. Ayala, 1981: Superoxide dismutase inDrosophila melanogaster. Biochemical and structural characterization of allozyme variants. Proc. Natl. Acad. Sci. USA 78: 7052–7055.PubMedGoogle Scholar
  8. Luckinbill, L. S., T. A. Grudzien, S. Rhine & G. Weisman, 1989. The genetic basis of adaptation to selection for longevity inDrosophila melanogaster. Evol. Ecology 3: 31–39.Google Scholar
  9. Maynard Smith, J., 1966. Theories of aging, pp. 1–35 in Topics in the Biology of Aging, edited by P. L. Krohn. Interscience, NY.Google Scholar
  10. McCord, J. M. & I. Fridovich, 1969. Superoxide dismutase: An enzymatic function for erythrocuprin. J. Biol. Chem. 224: 6049–6055.Google Scholar
  11. Reveillaud, I., A. Niedzwiecki & J. E. Fleming, 1991. Expersion of bovine superoxide dismutase inDrosophila melanogaster augments resistance to oxidative stress. Mol. Cell. Biol. 11: 632–40.PubMedGoogle Scholar
  12. Rose, M. R., 1984. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.Google Scholar
  13. Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, NY.Google Scholar
  14. Serradilla, J. M. & F. J. Ayala, 1983. Ecological and evolutionary divergence in five species ofDrosophila. Z. zool. Syst. Evolut.-forsch. 21: 194–200.Google Scholar
  15. Service, P. M., 1987. Physiological mechanisms of increased stress resistance inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 60: 321–326.Google Scholar
  16. Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 58: 380–389.Google Scholar
  17. Service, P. M., E. W. Hutchinson & M. R. Rose, 1988. Multiple genetic mechanisms for the evolution of senescence inDrosophila melanogaster. Evolution 42: 708–716.Google Scholar
  18. Singh, R. M., D. A. Hickey & J. David, 1982. Genetic differentiation between geographically distant populations ofDrosophila melanogaster. Genetics 101: 235–256.Google Scholar
  19. Smit-McBride, Z., A. Moya & F. J. Ayala 1988. Linkage disequilibirium in natural and experimental populations ofDrosophila melanogaster. Genetics 120: 1043–1051.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Robert H. Tyler
    • 2
  • Hardip Brar
    • 2
  • Meena Singh
    • 2
  • Amparo Latorre
    • 2
  • Joseph L. Graves
    • 2
  • Laurence D. Mueller
    • 2
  • Michael R. Rose
    • 2
  • Francisco J. Ayala
    • 2
  1. 1.Departmento de Genetica, Facultad de BiologiaUniversidad de ValenciaSpain
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations