, Volume 91, Issue 1–3, pp 99–109 | Cite as

Population density effects on longevity

  • Joseph L. GravesJr.
  • Laurence D. Mueller


Population density, or the number of adults in an environment relative to the limiting resources, may have important long and short term consequences for the longevity of organisms. In this paper we summarize the way in which crowding may have an immediate impact on longevity, either through the phenomenon known as dietary restriction or through alterations in the quality of the environment brought on by the presence of large numbers of individuals. We also consider the possible long term consequences of population density on longevity by the process of natural selection. There has been much theoretical speculation about the possible impact of population density on the evolution of longevity but little experimental evidence has been gathered to test these ideas. We discuss some of the theory and empirical evidence that exists and show that population density is an important factor in determining both the immediate chances of survival and the course of natural selection.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrewartha, H. G. & L. C. Birch, 1954. Distribution and Abundance of Animals. University of Chicago Press, Chicago.Google Scholar
  2. Austad, S. N., 1989. Life extension by dietary restriction in the bowl and doily spider,Frontinella pyramirela. Exp. Gerontol. 24: 83–92.PubMedGoogle Scholar
  3. Beverton, R. J. H., 1962. Long-term dynamics of certain North Sea fish populations, pp. 242–259 in The Exploitation of Natural Animal Populations, edited by E. D. LeCren and M. W. Holgate, Wiley, N.Y.Google Scholar
  4. Carey, J. R., P. Liedo, D. Orozco & J. W. Vaupel, 1992. Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457–461.PubMedGoogle Scholar
  5. Charlesworth, B., 1980. Evolution in age-structured populations. Cambridge University Press.Google Scholar
  6. Chiang, H. C. & A. C. Hodson, 1954. An analytical study of population growth inDrosophila melanogaster. Ecol. Monog. 20: 173–206.Google Scholar
  7. Chippindale, A. K., A. M. LeRoi, S. B. Kim & M. R. Rose, 1993. Phenotypic plasticity and selection inDrosophila lifehistory evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. 6: 171–193.Google Scholar
  8. Cole, L. C., 1954. The population consequences of life history phenomena. Q. Rev. Biol. 29: 103–137.PubMedGoogle Scholar
  9. Darwin, C., 1859. On the Origin of Species. Reprinted by Harvard University Press.Google Scholar
  10. David, J., J. Van Herrewege & P. Fouillet, 1971. Quantitative underfeeding ofDrosophila: effects on adult longevity and fecundity. Exp. Gerontol. 6: 249–257.PubMedGoogle Scholar
  11. Davis, M. B., 1945. The effect of population density on longevity inTrogoderma versicolor creutz (=T. inclusa Lec.). Ecology 26: 353–362.Google Scholar
  12. Edney, E. B. & R. W. Gill, 1968. Evolution of senescence and specific longevity. Nature 220: 281–282.PubMedGoogle Scholar
  13. Eisenburg, J. F., 1981. The Mammalian Radiations. The University of Chicago Press, Chicago.Google Scholar
  14. Eisenburg, R., 1966. The regulation of density in a natural population of the pond snailLymnaea elodes. Ecology 47: 889.Google Scholar
  15. Ernsting, G. & J. A. Issaks, 1991. Accelerated aging: a cost of reproduction in the carabid beetleNotiophilus biguttatus F. Funct. Ecol. 5: 299–303.Google Scholar
  16. Flanagan, J. R., 1980. Detecting early-life components in the determination of the age of death. Mech. Aging Develop. 13: 41–62.Google Scholar
  17. Frank, P. W., C. D. Bell & R. W. Kelly, 1957. Vital statistics of laboratory cultures ofDaphnia pulex DeGree as related to density. Physiol. Zool. 4: 287–305.Google Scholar
  18. Gibb, J. A., 1960. Populations of tits and goldcrests and their food supply in pine plantations. Ibis 102: 163–208.Google Scholar
  19. Gordon, R. M. & R. K. Stewart, 1988. Demographic characteristics of the stored product mothCadra cautella. J. Anim. Ecol. 57: 627–644.Google Scholar
  20. Graves, J. L. & M. R. Rose, 1990. Flight duration inDrosophila melanogaster selected for postponed senescence. Chapter 5. in Genetic Effects on Aging II., Telford Press, Caldwell, NJ.Google Scholar
  21. Graves, J. L., E. C. Toolson, C. Jeong, L. N. Vu & M. R. Rose, 1992. Desiccation, flight, glycogen, and postponed senescence inDrosophila melanogaster. Physiol. Zool. 65: 268–286.Google Scholar
  22. Hamilton, W. D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.PubMedGoogle Scholar
  23. Harrison, D. E. & J. R. Archer, 1988. Natural selection for extended longevity from food restriction. Growth Dev. Aging 52: 207–211.PubMedGoogle Scholar
  24. hassell, M. P. & R. M. May, 1989. The population biology of host-parasite and host-parasitoid associations. Chapter 22, in Perspectives in Ecological Theory, edited by J. Roughgarden, R. M. May and S. A. Levin. Princeton University Press, Princeton, N.J.Google Scholar
  25. Hoffman, R. S., 1958. The role of reproduction and mortality in population fluctuations of voles (Microtus). Ecol. Monog. 28: 79–109Google Scholar
  26. Holehan, A. M. & B. J. Merry, 1985a. Modification of the oestrous cycle hormonal profile by dietary restriction. Mech Aging and Dev. 32: 63–76.Google Scholar
  27. Holehan, A. M. & B. J. Merry, 1985b. The control of puberty in the dietary restricted female rat. Mech Aging and Dev. 32: 179–191.Google Scholar
  28. Holchan, A. M. & B. J. Merry, 1986. The experimental manipulation of aging by diet. Biol. Rev. Camb. Phil. Soc. 61: 329–368.Google Scholar
  29. Holiday, R., 1989. Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bio Essays 10: 125–127.Google Scholar
  30. Ingram, D. K., R. Weindruch, E. W. Spangler, J. R. Freeman & R. L. Walford, 1987. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42: 78–81.PubMedGoogle Scholar
  31. Luckinbill, L. S. & M. J. Clare, 1985. Selection for life span inDrosophila melanogaster. Heredity 55: 9–18.PubMedGoogle Scholar
  32. MacArthur, R. H. & E. O. Wilson, 1967. The theory of island biogeography. Princeton University Press.Google Scholar
  33. Malthus, T., 1798. An Essay on the Principle of Population. Reprinted by MacMillan, New York.Google Scholar
  34. McKay, C. M., L. A. Maynard, G. Sperling & L. L. Barnes, 1939. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. J. Nutr. 18: 1–13.Google Scholar
  35. Medawar, P. B., 1952. An unsolved problem in biology. H. K. Lewis, London.Google Scholar
  36. Miller, R. S. & J. L. Thomas, 1958. The effects of larval crowding and body size on the longevity of adultDrosophila melanogaster. Ecology 39: 118–125.Google Scholar
  37. Mitchell, B., 1973. The reproductive performance of wild Scottish red deer,Cervus elaphus. J. Repro. Fert. 19: 271–285.Google Scholar
  38. Morris, J. G., 1991. Nutrition, in Environmental and Metabolic Animal Physiology. Wiley-Liss, New York.Google Scholar
  39. Mueller, L. D., 1987. Evolution of accelerated senescence in laboratory populations ofDrosophila. Proc. Natl. Acad. Sci. USA. 84: 1974–1977.PubMedGoogle Scholar
  40. Mueller, L. D., 1988. Density-dependent population growth and natural selection in food limited environments: theDrosophila model. Am. Nat. 132: 786–809.Google Scholar
  41. Mueller, L. D., 1991. Ecological determinants of life-history evolution. Phil. Trans. R. Soc. Lond. B 332: 25–30.Google Scholar
  42. Mueller, L. D. & F. J. Ayala, 1981a. Trade-off between r-selection and K-selection inDrosophila populations. Proc. Natl. Acad. Sci. U.S.A. 78: 1303–1305.Google Scholar
  43. Mueller, L. D. & F. J. Ayala, 1981b. Fitness and density dependent population growth inDrosophila melanogaster. Genetics 97: 667–677.PubMedGoogle Scholar
  44. Mueller, L. D., J. L. Graves & M. R. Rose, 1993. Interactions between density-dependent and age-specific selection inDrosophila melanogaster. Functional Ecology (in press).Google Scholar
  45. Mueller, L. D., F. Gonzalez-Candelas & V. F. Sweet, 1991. Components of density-dependent population dynamics: models and tests withDrosophila. Amer. Nat. 137: 547–475.Google Scholar
  46. Nusbaum, T. J., J. L. Graves, L. D. Mueller & M. R. Rose, 1993. Letters to Science. Science 260: 1567.PubMedGoogle Scholar
  47. Partridge, L., 1987. Is acclerated senescence a cost of reproduction? Funct. Ecol. 1: 317–320.Google Scholar
  48. Partridge, L. & Fowler, 1992. Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster. Evolution 46: 76–92.Google Scholar
  49. Pearl, R. & S. L. Parker, 1922. Experimental studies on the duration of life. IV. Data on the influence of density of population on duration of life inDrosophila. Amer. Nat. 56: 312–321.Google Scholar
  50. Pearl, R., J. R. Miner & S. L. Parker, 1927. Experimental studies on the duration of life. XI. Density of population and life duration inDrosophila. Amer. Nat. 61: 289–318.Google Scholar
  51. Pena de Grimaldo, E. & M. M. J. Lavoipierre, 1960a. Efecto de la fertilazacion sobre la ovopostura de los mosquitosAedes aegypti variedad queenlandensis, con algunas observaciones sobre anomalias y viabilidad de los hevos retindos por los mosquitos esteriles fecundizados a diferentes intervalos despues de la comida de sangre. Rev. Iberica Parasitol. 20: 163–176.Google Scholar
  52. Pena de Grimaldo, E. & M. M. J. Lavoipierre, 1960b. Longevidad de los mosquitosAedes aegypti variedad queenlandensis fecundados y no fecundados, alimentados con sangre o privados de ella; y dejados en qyuno; o preveidos de aqua; de solucion de azucar; o de aqua y solucion de azucar. Rev. Iberica Parasitol. 20: 39–52.Google Scholar
  53. Phelan, J. P. & S. N. Austad, 1989. Natural selection, Dietary Restriction, and Extended longevity. Growth, Dev. and Aging.Google Scholar
  54. Pianka, E., 1972.r- andK-selection orb andd selection? Am. Nat. 106: 581–588.Google Scholar
  55. Prout, T. & F. McChesney, 1985. Competition among immatures affects their adult fertility: population dynamics. Am. Nat. 126: 521–558.Google Scholar
  56. Robertson, J. R. & G. W. Salt, 1981. Responses in growth, mortality, and reproduction to variable food levels by the rotifer,Aspolanchia girodi. Ecology 62: 1585–1596.Google Scholar
  57. Rose, M. R., 1984a. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.Google Scholar
  58. Rose, M. R., 1984b. Evolutionary route to Methusalah. New Scientist 103: 15.Google Scholar
  59. Rose, M. R., 1985. Life history with antagonistic pleiotropy and overlapping generations. Theor. Popul. Biol. 28: 342–358.Google Scholar
  60. Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, New York.Google Scholar
  61. Rose, M. R., J. L. Graves & E. W. Hutchinson, 1990. The use of selection to probe patterns of pleiotropy in fitness characters. Chapter 2. In: Insect Life Cycles: Genetics, Evolution, and Coordination. Springer-Verlag. Berlin.Google Scholar
  62. Rose, M. R., L. N. Vu, S. Park & J. L. Graves, 1992. Selection on stress resistance incrases longevity inDrosophila melanogaster. Exop. Gerontol. 27: 241–250.Google Scholar
  63. Schoener, T., 1973. Population growth regulated by intraspecific competition for energy or time. Theor. Popul. Biol. 4: 56–84.PubMedGoogle Scholar
  64. Service, P. M., 1987. Physiological stress mechanisms of increased stress resistance inDrosophila melanogaster, selected for postponed senescence. Physiol. Zool. 60: 321–326.Google Scholar
  65. Service, P. M., 1989. The effect of mating status on life span, egg laying, and starvation resistance inDrosophila melanogaster, in relation to selection for longevity. J. Insest Phys. 35: 447–452.Google Scholar
  66. Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster. selected for postponed senescence. Physiol. Zool. 58: 380–389.Google Scholar
  67. Service, P. M. & M. R. Rose, 1985. Genetic covariation among life-history components: The effect of novel environments. Evolution 39: 943–945.Google Scholar
  68. Slob, A. K., S. J. M. Vreeburg & J. J. van der Werff ten Bosch, 1979. Body growth, puberty and under nutrition in the male guinea pig. Br. J. Nutr. 41: 231–237.PubMedGoogle Scholar
  69. Slobodkin, L. B., 1954. Population dynamics inDaphnia obscura Kurz. Ecol. Monog. 24: 69–88.Google Scholar
  70. Tanner, J. T., 1966. Effects of population density on growth rates of animal populations. Ecology 45: 733–745.Google Scholar
  71. Wigglesworth, V. B., 1949. The utilization of reserve substances inDrosophila during flight. J. Exp. Biol. 26: 150–163.PubMedGoogle Scholar
  72. Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Joseph L. GravesJr.
    • 1
  • Laurence D. Mueller
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations