Genetica

, Volume 91, Issue 1–3, pp 65–77

Comparing mutants, selective breeding, and transgenics in the dissection of aging processes ofCaenorhabditis elegans

  • Thomas E. Johnson
  • Patricia M. Tedesco
  • Gordon J. Lithgow
Article

Abstract

The genetic analysis of aging processes has matured in the last ten years with reports that long-lived strains of both fruit flies and nematodes have been developed. Several attempts to identify mutants in the fruit fly with increased longevity have failed and the reasons for these failures are analyzed. A major problem in obligate sexual species, such as the fruit fly, is the presence of inbreeding depression that makes the analysis of life-history traits in homozygotes very difficult. Nevertheless, several successful genetic analyses of aging inDrosophila suggest that with careful design, fruitful analysis of induced mutants affecting life span is possible. In the nematodeCaenorhabditis elegans, mutations in theage-1 gene result in a life extension of some 70%; thusage-1 clearly specifies a process involved in organismic senescence. This gene maps to chromosome II, well separated from a locus (fer-15) which is responsible for a large fertility deficit in the original stocks. There is no trade-off between either rate of development or fertility versus life span associated with theage-1 mutation. Transgenic analyses confirm that the fertility deficit can be corrected by a wild-typefer-15 transformant (transgene); however, the life span of these transformed stocks is affected by the transgenic array in an unpredictable fashion. The molecular nature of theage-1 gene remains unknown and we continue in our efforts to clone the gene.

Key words

longevity nematodes senescence genetic transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arking, R., 1987. Evolution of longevity in animals, pp. 1–22 in Genetic and Environmental Determinants of Longevity inDrosophila, edited by A. D. Woodhead & K. H. Thompson. Plenum Publishing Corp., NY.Google Scholar
  2. Arking, R., 1988. Genetic analysis of aging processes inDrosophila. Exp. Aging. Res. 14: 125–135.PubMedGoogle Scholar
  3. Arking, R., S. Buck, A. Berrios, S. Dwyer & G. T. Baker III, 1991. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain ofDrosophila. Dev. Genet. 12: 362–370.PubMedGoogle Scholar
  4. Arking, R. & R. A. Wells, 1990. Genetic alteration of normal aging processes is responsible for extended longevity inDrosophila. Devel. Genet. 11: 141–148.Google Scholar
  5. Brooks, A. & T. E. Johnson, 1991. Genetic specification of life span and self-fertility in recombinant-inbred strains ofCaenorhabditis elegans. Heredity 67: 19–28.PubMedGoogle Scholar
  6. Brenner, S., 1974. The Genetics ofCaenorhabditis elegans. Genetics 77: 71–94.PubMedGoogle Scholar
  7. Capecchi, M. R., 1989. Altering the genome by homologous recombination. Science 244: 1288–1292.PubMedGoogle Scholar
  8. Charlesworth, B., 1988. Selection for longer-lived rodents. Growth Devel. Aging 52: 211.Google Scholar
  9. Coulson, A., J. Sulston, S. Brenner & J. Karn, 1986. Toward a physical map of the genome of the nematodeCaenorhabditis elegans. Proc. Natl.Acad. Sci. USA 83: 7821–7825.Google Scholar
  10. Coulson, A., J. Waterston, J. Sulston & Y. Kohara, 1988. Genome linking with yeast artificial chromosomes. Nature 335: 184–186.PubMedGoogle Scholar
  11. Finch, C. E., 1990. Longevity, Senescence, and the Genome. The University of Chicago Press, Chicago.Google Scholar
  12. Fleming, J. E., G. S. Spicer, R.C. Garrison & M. R. Rose, 1993. Two-dimensional protein electrophoretic analysis of postponed aging inDrosophila. Genetica (In press).Google Scholar
  13. Friedman, D. B. & T. E. Johnson, 1988a. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86.PubMedGoogle Scholar
  14. Friedman, D. B. & T. E. Johnson, 1988b. Three mutants that extend both mean and maximum life span of the nematode,Caenorhabditis elegans, define the age-1 gene. J. Gerontol. Biol. Sci. 43: B102–109.Google Scholar
  15. Gould, A. B. & A. M. Clark, 1977. X-ray induced mutations causing adult life-shortening inDrosophila melanogaster. Exp. Gerontol. 12: 107–112.PubMedGoogle Scholar
  16. Graves, J. L., E. C. Toolson, C. Jeong, L. N. Vu & M. R. Rose, 1992. Desiccation, flight, glycogen and postponed senescence inDrosophila melanogaster. Physiol. Zool. (In press).Google Scholar
  17. Harrison, D. E., 1988. Mini-Editorial Introduction: Selection for longer-lived rodents. Growth Devel. Aging 52: 207.Google Scholar
  18. Herman, R. K., 1988. Genetics, pp. 17–45 in The NematodeCaenorhabditis elegans, edited by W. B. Wood, Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  19. Hutchinson, E. W., 1993. Genetica (In press).Google Scholar
  20. Hutchinson, E. W. & M. R. Rose, 1990. Quantitative genetic analysis of postponed aging inDrosophila melanogaster, pp. 65–85 in Genetic Effects on Aging II, edited by D. E. Harrison, Telford Press, Caldwell, NJ.Google Scholar
  21. Johnson, T. E., 1984. Analysis of the biological basis of aging in the nematode, with special emphasis onCaenorhabditis elegans, pp. 59–93 in Invertebrate Models in Aging Research, edited by D. H. Mitchell & T. E. Johnson, CRC Press, Boca Raton, FL.Google Scholar
  22. Johnson, T. E., 1987. Aging can be genetically dissected into component processes using long-lived lines ofCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 84: 3777–3781.PubMedGoogle Scholar
  23. Johnson, T. E., 1988. Thoughts on the selection of longer-lived rodents. Growth Devel. Aging 52: 207–209.Google Scholar
  24. Johnson, T. E., 1990. The increased life span of age-1 mutants inCaenorhabditis elegans results from lowering the Gompertz rate of aging. Science 249: 908–912.PubMedGoogle Scholar
  25. Johnson, T. E., D. B. Friedman, N. Foltz, P. A. Fitzpatrick & J. E. Shoemaker, 1990. Genetic variants and mutations ofCaenorhabditis elegans provide tools for dissecting the aging processes, pp. 101–127 in Genetic Effects on Aging. Volume II, edited by D. E. Harrison, Telford Press, NY.Google Scholar
  26. Johnson, T. E. & E. W. Hutchinson, Absence of strong heterosis for life span and other life history traits inCaenorhabditis elegans. Genetics, in press.Google Scholar
  27. Johnson, T. E., E. W. Hutchinson & P. M. Tedesco, Genetic and physical mapping of fer-15 and age-1 using chromosome deficiencies inCaenorhabditis elegans (Submitted).Google Scholar
  28. Johnson, T. E., D. H. Mitchell, S. Kline, R. Kemal & J. Foy, 1984. Arresting development arrests aging in the nematodeCaenorhabditis elegans. Mech. Ageing Dev. 28: 23–40.PubMedGoogle Scholar
  29. Johnson, T. E. & W. B. Wood, 1982. Genetic analysis of life-span inCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79: 6603–6607.PubMedGoogle Scholar
  30. Klass, M. R., 1983. A method for the isolation of longevity mutants in the nematodeCaenorhabditis elegans and initial results. Mech. Ageing Dev. 22: 279–286.PubMedGoogle Scholar
  31. Lee, E. & M. Desu, 1972. A computer program for comparing k samples with right-censored data. Comp. Progs. Biomed. 2: 315–321.Google Scholar
  32. Leffelaar, D. & T. A. Grigliatti, 1984. A mutation inDrosophila that appears to accelerate aging, Develop. Genet. 4: 199–210.Google Scholar
  33. Luckinbill, L. S., R. Arking, M. J. Clare, W. C. Cirocco & S. A. Muck, 1984. Selection for delayed senescence inDrosophila melanogaster. Evolution 38: 996–1003.Google Scholar
  34. Luckinbill, L. S., J. L. Graves, A. Tomkiw & O. Sowirka, 1988. A qualitative analysis of some life-history correlates of longevity inDrosophila melanogaster. Evol. Eco. 2: 85–94.Google Scholar
  35. Luckinbill, L. S., V. Riha, S. Rhine & T. A. Grudzien, 1990. The role of glucose-6-phosphate dehydrogenase in the evolution of longevity inDrosophila melanogaster. Heredity 65: 29–38.PubMedGoogle Scholar
  36. Maynard Smith, J., 1958. The effects of temperature and egg laying on the longevity ofDrosophila subobscura. Journal of Experimental Biology 35: 832–842.Google Scholar
  37. Mello, C. C., J. M. Kramer, D. Stinchcomb & V. Ambros, 1991. Efficient gene transfer inC. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO J. 10: 3959–3970.Google Scholar
  38. Olson, M. V., 1992. The lessons from the nematode. Curr. Biol. 5: 221–223.Google Scholar
  39. Pretzlaff, R. & R. Arking, 1989. Patterns of amino acid incorporation in long-lived genetic strains ofDrosophila melanogaster. Exp. Geront. 24: 67–81.Google Scholar
  40. Roberts, P. A. & R. B. Iredale, 1985. Can mutagenesis reveal major genes affecting senescence. Exp. Geront. 20: 119–121.Google Scholar
  41. Rose, M. R., 1984. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.Google Scholar
  42. Rose, M. R., 1988. Response to ‘Thoughts on the selection of longer-lived rodents’-Rejoinders. Growth Devel. Aging 52: 209–211.Google Scholar
  43. Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford Univ. Press, NY.Google Scholar
  44. Rose, M. R., J. E. Fleming, G. Spicer, R. E. Tyler & F. J. Ayala, 1990. Molecular genetics of postponed aging inDrosophila (Abstract).The Gerontologist 30: 252A-253A.Google Scholar
  45. Rose, M. R., 1990. A workshop summary: should mice be selected for postponed aging? Growth Devel. Aging 54: 7–15.Google Scholar
  46. Rose, M. R. 1993. Genetica (In press).Google Scholar
  47. Sigurdson, D. C., G. J. Spanier & R. K. Herman, 1984.Caenorhabditis elegans deficiency mapping. Genetics 108: 331–345.PubMedGoogle Scholar
  48. St Johnston, D. & C. Nusslein-Volhard, 1992. The origin of pattern and polarity in theDrosophila embryo. Cell 68: 201–219.PubMedGoogle Scholar
  49. Stinchcomb, D. T., J. E. Shaw, S. H. Carr & D. Hirsh, 1985. Extrachromosomal DNA transformation ofCaenorhabditis elegans. Mol. Cell Biol 5: 3484–3496.PubMedGoogle Scholar
  50. Stearns, S. C., M. Kaiser & E. Hillesheim, 1993. Effects of fitness components of enhanced expression of elongation factor EF-1α inDrosophila melanogaster: I. The contrasting approaches of molecular and population biologists.Genetica (In press).Google Scholar
  51. Sulston, J., Z. Du, K. Thomas, R. Wilson, L. Hillier,R. Staden, N. Halloran, P. Green, J. Thierry-Mieg, L. Qiu, S. Dear, A. Coulson, M. Craxton, R. Durbin, M. Berks, M. Metzstein, T. Hawkins, R. Ainscough & R. Waterston, 1992. TheC. elegans genome sequencing project: a beginning. Nature 356: 37–41.PubMedGoogle Scholar
  52. Van Voorhies, W. A., 1992. Production of sperm reduces nematode lifespan. Nature 360: 456–458.PubMedGoogle Scholar
  53. Watson, J. D., M. Gilman, J. Witkowski & M. Zoller, 1992. Recombinant DNA. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  54. Wood, W. B., 1988. The NematodeCaenorhabditis elegans. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Thomas E. Johnson
    • 1
  • Patricia M. Tedesco
    • 1
  • Gordon J. Lithgow
    • 1
  1. 1.Institute for Behavioral GeneticsUniversity of ColoradoBoulderUSA

Personalised recommendations