, Volume 91, Issue 1–3, pp 11–19 | Cite as

Evolutionary mechanisms of senescence

  • Brian Charlesworth


This paper reviews theories of the evolution of senescence. The population genetic basis for the decline with age in sensitivity of fitness to changes in survival and fecundity is discussed. It is shown that this creates a presure of selection that disproportionately favors performance early in life. The extent of this bias is greater when there is a high level of extrinsic mortality; this accounts for much the diversity in life-history patterns among different taxa. The implications of quantitative genetic theory for experimental tests of alternative population genetic models of senescence are discussed. In particular, the negative genetic correlations between traits predicted by the antagonistic pleiotropy model may be obscured by positive correlations that are inevitable in a multivariate system, or by the effects of variation due to deleterious mutations. The status of the genetic evidence relevant to these theories is discussed.

Key words

senescence life-history population genetics quantitative genetics mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, W. A., 1984. Manual of Quantitative Genetics. 4th ed. Academic Enterprises, Pullman, WA.Google Scholar
  2. Bell, G. & V. Koufopanou, 1986. The cost of reproduction. Oxf. Surv. Ev. Bio. 3: 83–131.Google Scholar
  3. Caughley, G., 1977. Analysis of Vertebrate Populations. Wiley Interscience. New York, N. Y.Google Scholar
  4. Charlesworth, B., 1980. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge, U.K.Google Scholar
  5. Charlesworth, B., 1990a. Optimization models, quantitative genetics, and mutation, Evolution 44: 520–538.Google Scholar
  6. Charlesworth, B., 1990b. Natural selection and life history patterns, pp. 21–40 in Genetic Effects on Aging, edited by D. E. Harrison. Telford Press, Caldwell, N.J.Google Scholar
  7. Charlesworth, B. & D. Charlesworth, 1973. The measurement of fitness and mutation rate in human populations. Ann. Hum. Genet. 37: 175–187.PubMedGoogle Scholar
  8. Charnov, E. L., 1989. Phenotypic evolution under Fisher's Fundamental Theorem of natural selection. Heredity 62: 97–106.PubMedGoogle Scholar
  9. Cole, L. C., 1954. The population consequences of life history phenomena. Quart. Rev. Biol. 29: 103–137.PubMedGoogle Scholar
  10. Comfort, A., 1979. The Biology of Senescence. 3rd. ed. Churchill Livingstone, London, U.K.Google Scholar
  11. Crow, J. F. & M. J. Simmons, 1983. The mutation load inDrosophila, pp. 1–35 in The Genetics and Biology of Drosophila, Vol. 3c., edited by H. L. Carson, M. Ashburner and J. N. Thomson, Academic Press, London, U.K.Google Scholar
  12. Dickerson, G. E., 1955. Genetic slippage in response to selection for multiple objectives. Cold Spring Harb. Symp. Quant. Biol. 20: 213–224.PubMedGoogle Scholar
  13. Dingle, H. & J. P. Hegmann, 1982. Evolutionary Genetics of Life Histories. Springer-Verlag, New York, N.Y.Google Scholar
  14. Edney, E. B. & R. W. Gill, 1968. Evolution of senescence and specific longevity. Nature 220: 281–282.PubMedGoogle Scholar
  15. Falconer, D. S., 1989. An Introduction to Quantitative Genetics. 3rd. ed. Longman, London, U.K.Google Scholar
  16. Finch, C. E., 1991. Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, IL.Google Scholar
  17. Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford U.K.Google Scholar
  18. Haldane, J. B. S., 1941. New Paths in Genetics. Allen and Unwin, London.Google Scholar
  19. Hamilton, W. D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.PubMedGoogle Scholar
  20. Harvey, P. H. & A. F. Read, 1988. How and why do mammalian life histories vary? pp. 213–231 in Evolution of Life Histories of Mammals: Theory and Pattern, edited by M. P. Boyce. Yale University Press, New Haven, C.T.Google Scholar
  21. Houle, D., 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630–648.Google Scholar
  22. Houle, D., D. K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness inDrosophila. Nature 359: 58–60.PubMedGoogle Scholar
  23. Kempthorne, O., 1957. An Introduction to Genetic Statistics. John Wiley, New York, N.Y.Google Scholar
  24. Kirkwood, T.B.L., 1990. The disposable soma theory of aging, pp. 9–10 in Genetic Effects on Aging, edited by D. E. Harrison. Telford Press, Caldwell, N.J.Google Scholar
  25. Kirkwood, T. B. L. & R. Holliday, 1979. The evolution of ageing and longevity. Proc. Roy. Soc. Lond. B. 205: 531–546.Google Scholar
  26. Kondrashov, A. S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.PubMedGoogle Scholar
  27. Kosuda, K., 1985. The aging effect on male mating activity inDrosophila melanogaster. Behav. Genet. 15: 297–303.PubMedGoogle Scholar
  28. Lack, D. L., 1954. The Natural Regulation of Animal Numbers. Oxford University Press, Oxford, U.K.Google Scholar
  29. Lande, R., 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607–615.Google Scholar
  30. Medawar, P. B., 1946. Old age and natural death. Modern Quarterly 1: 30–56.Google Scholar
  31. Medawar, P. B., 1952. An Unsolved Problem of Biology. H. K. Lewis, London, U.K.Google Scholar
  32. Orzack, S. H. & S. Tuljapurkar, 1989. Population dynamics in variable environments. Amer. Nat. 133: 901–923.Google Scholar
  33. Partridge, L. & K. Fowler, 1992. Direct and correlated responses to selection on age at reproduction inDrosophila. Evolution 46: 76–91.Google Scholar
  34. Partridge, L. & P. H. Harvey, 1988. The ecological context of life history evolution. Science 214: 1449–1455.Google Scholar
  35. Pease, C. M. & J. J. Bull, 1988. A critique of methods for measuring life-history trade-offs. J. Evol. Biol. 1: 293–303.Google Scholar
  36. Promislow, D. E. L., 1991. Senescence in natural populations of mammals: a comparative study. Evolution 45: 1869–1887.Google Scholar
  37. Reznick, D., 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.Google Scholar
  38. Robertson, A., 1955. Selection in animals: synthesis. Cold Spring Harb. Symp. Quant. Biol. 20: 225–229.Google Scholar
  39. Rose, M. R., 1982. Antagonistic pleiotropy, dominance and genetic variation. Heredity 48: 63–78.Google Scholar
  40. Rose, M. R., 1984. Genetic covariation inDrosophila life history: untangling the data. Amer. Nat. 123: 565–569.Google Scholar
  41. Rose, M. R., 1985. Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28: 342–358.Google Scholar
  42. Rose, M. R., 1991. The Evolutionary Biology of Aging. Oxford University Press, Oxford, U.K.Google Scholar
  43. Rose, M. R. & B. Charlesworth, 1980. A test of evolutionary theories of senescence. Nature 287: 141–142.PubMedGoogle Scholar
  44. Rose, M. R. & B. Charlesworth, 1981. Genetics of life history inDrosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173–186.Google Scholar
  45. Service, P. M. & M. R. Rose, 1985. Genetic covariation among life history components: the effect of novel environments. Evolution 39: 943–945.Google Scholar
  46. Sibly, R. M. & P. Calow, 1986. Physiological Ecology of Animals: An Evolutionary Approach. Blackwell, Oxford, U.K.Google Scholar
  47. Stearns, S. C., 1992. The evolution of life histories. Oxford University Press, Oxford, U.K.Google Scholar
  48. Templeton, A. R., 1980. The evolution of life histories under pleiotropic constraints andr-selection. Theor. Pop. Biol. 18: 279–289.Google Scholar
  49. Williams, G. C., 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398–411.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Brian Charlesworth
    • 1
  1. 1.Department of Ecology and EvolutionThe University of ChicagoChicagoUSA

Personalised recommendations