Genome and stresses: Reactions against aggressions, behavior of transposable elements
- 165 Downloads
- 38 Citations
Abstract
The action of stresses on the genome can be considered as responses of cells or organisms to external aggressions. Stress factors are of environmental origin (climatic or trophic) or of genomic nature (introduction of foreign genetic material, for example). In both cases, important perturbations can occur and modify hereditary potentialities, creating new combinations compatible with survival; such a situation may increase the variability of the genome, and allow evolutive processes to take place. The behavior of transposable elements under stress conditions is thus of particular interest, since these sequences are sources of mutations and therefore of genetic variability; they may play an important role in population adaptation. The survey of the available experimental results suggests that, although some examples of mutations and transposable elements movements induced by external factors are clearly described, environmental injuries or introduction of foreign material into a genome are not systematically followed by drastic genomic changes.
Key words
environment genome stress transposable elements DrosophilaPreview
Unable to display preview. Download preview PDF.
References
- Alexandrov, Y. N. & M. D. Golubovsky, 1983. The multisite mutations induced by viruses and foreign DNA can spread in natural populations ofDrosophila. D.I.S. 59: 10–11.Google Scholar
- Arnault, C. & C. Biémont, 1989. Heat shocks do not mobilize mobile elements in genomes ofDrosophila melanogaster inbred lines. J. Mol. Evol. 28: 388–390.PubMedGoogle Scholar
- Arnault, C., A. Heizmann, C. Lœvenbruck & C. Biémont, 1991. Environmental stresses and mobilization of transposable elements in inbred lines ofDrosophila melanogaster. Mut. Res. 248: 51–60.Google Scholar
- Ashburner, M. & J. J. Bonner, 1979. The induction of gene activity inDrosophila by heat shock. Cell 17: 241–254.PubMedGoogle Scholar
- Barker, D. D., H. Wu, S. Hartung, M. Breindl & R. Jaenisch, 1991. Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov 13 mice. Mol. Cell. Biol. 11: 5154–5163.PubMedGoogle Scholar
- Baumiller, R. C., 1967. Virus induced point mutation. Nature 214: 806–807.PubMedGoogle Scholar
- Berg, R. L., 1982. Mutability changes inDrosophila melanogaster populations of Europe, Asia, and North America and probable mutability changes in human populations of the USSR. Jpn. J. Genet. 57: 171–183.Google Scholar
- Biémont, C., 1992. Population genetics of transposable elements. ADrosophila point of view. Genetica 86: 67–84.PubMedGoogle Scholar
- Biémont, C., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line ofDrosophila melanogaster. Nature 329: 742–744.PubMedGoogle Scholar
- Biémont, C., A. Aouar & C. Arnault, 1988. Transposition of copia elements inDrosophila. Nature 332: 21–22.PubMedGoogle Scholar
- Biémont, C., C. Arnault, A. Heizmann & S. Ronsseray, 1990. Massive changes in genomic locations of P elements in an inbred line ofDrosophila melanogaster. Naturwissenschaften 77: 485–488.PubMedGoogle Scholar
- Blackman, R. K., R. Grimaila, M. Macy, D. Koehler & W. M. Gilbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system inDrosophila melanogaster. Cell 49: 497–505.PubMedGoogle Scholar
- Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.PubMedGoogle Scholar
- Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
- Bucala, R., A. T. Lee, L. rourke & A. Cerami, 1993. Transposition of an Alu-containing element induced by DNA-advanced glycosylation endoproducts. Proc. Natl. Acad. Sci. USA 90: 2666–2670.PubMedGoogle Scholar
- Burdette, W. J. & J. S. Yoon, 1967. Mutations, chromosomal aberrations, and tumors in insects treated with oncogenic virus. Science 155: 340–341.PubMedGoogle Scholar
- Burr, B. & F. A. Burr, 1988. Activation of silent transposable elements. Plant Transposable Elements 47: 317–323.Google Scholar
- Carpenter, R., C. Martin & E. S. Coen, 1987. Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci inAntirrhinum majus. Mol. Gen. Genet. 207: 82–89.Google Scholar
- Chopra, V. L., 1970. DNA feeding and directed mutagenesis inDrosophila melanogaster. Genet. Res. Camb. 15: 345–346.Google Scholar
- Collins, J., B. Saari & P. Anderson, 1987. Activation of a transposable element in the germ line but not the soma ofCaenorhabditis elegans. nature 328: 726–728.PubMedGoogle Scholar
- Coudere, J. L., J. L. Becker, M. L. Sobrier, B. Dastugue, M. Best-Belpomme, J. A. Lepesant & M. L. Pardue, 1984. Isolation and chromosomal localization of ecdysterone-responsive genes in aDrosophila cell line. Chromosoma 89: 338–342.Google Scholar
- Cullis, C. A., 1986. Phenotytic consequences of environmentally induced changes in plant DNA. T.I.G. 24: 307–309.Google Scholar
- Dellaporta, S. L., P. S. Chomet, J. P. Mottinger, J. A. Wood, S. M. Yu & J. B. Hicks, 1984. Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. 49: 321–328.Google Scholar
- Di Franco, C., C. Pisano, F. Fourcade-Péronnet, G. Echalier & N. Junakovic, 1992. Evidence forde novo rearrangements ofDrosophila transposable elements induced by the passage to the cell culture. Genetica 87: 65–73.PubMedGoogle Scholar
- Eeken J. C. J. & F. H. Sobels, 1986. The effect of X-irradiation and formaldehyde treatment of spermatogonia on the reversion of an unstable, P-element insertion mutation inDrosophila melanogaster. Mut. Res. 175: 61–65.Google Scholar
- Eggleston W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families inD. melanogaster. Nature 331: 368–370.PubMedGoogle Scholar
- Fahmy, O. G. & M. J. Fahmy, 1966. The nature and distribution of the mutations induced by unirradiated and irradiated heterologous deoxyribonucleic acid inDrosophila melanogaster. Genetics 34: 1123–1138.Google Scholar
- Fincham, J. R. S. & G. R. K. Sastry, 1974. Controlling elements in maize. Ann. Rev. Genet. 8: 15–50.PubMedGoogle Scholar
- Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. T.I.G. 5: 103–107.Google Scholar
- Fox, A. S. & S. B. Yoon, 1968. On the mechanisms of DNA effects in eukaryotes. Proc. 12th Internat. Congr. Genet. 1: 87.Google Scholar
- Fujikawa, K. & S. Kondo, 1986. DNA repair dependence of somatic mutagenesis of transposon-caused white alleles inDrosophila melanogaster after treatment with alkylating agents. Genetics 112: 505–522.PubMedGoogle Scholar
- Garbe, J. C. & M. L. Pardue, 1986. Heat shock locus 93D ofDrosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83: 1812–1816.PubMedGoogle Scholar
- Gazaryan, K. G., V. A. Golitsov, S. D. Nabirochkin, L. G. Eshkind, V. Z. Tarantul, L. V. Lening & L. S. Popov, 1985. Introduction of DNA sequences of Rous Sarcoma Virus intoDrosophila and mouse genomes by microinjection into egg cell. Molecular Biology Translation of Moleculyarnaya Biologiya 19: 632–638.Google Scholar
- Gazaryan, K. G., S. D. Nabirochkin, E. N. Shibanova, A. G. Tatosyan, F. L. Kisselev, N. S. Ambartsumian, T. I. Tikhonenko & V. A. Goltzov, 1987. Unstable visible mutations induced inDrosophila melanogaster by injections of oncogenic virus DNA into the polar plasm of early embryos. Mol. Gen. Genet. 207: 130–141.PubMedGoogle Scholar
- Gazaryan, K. G., S. D. Nabirochkin, A. G. Tatosyan, A. K. Shahbazyan & E. N. Shibanova, 1984. Genetic effects of injection of Rous Sarcoma Virus DNA into polar plasm of earlyDrosophila melanogaster embryos. Nature 311: 392–394.PubMedGoogle Scholar
- Gazaryan, K. G., A. K. Shahbazyan, N. Yu. Sakhanova & S. G. Smirnova, 1982. Mulations obtained inDrosophila after microinjections of Rous Sarcoma Viruses into early embryos. D.I.S. 58: 54–55.Google Scholar
- Georgiev, P. G., S. E. Korochkina, S. G. Georgieva & T. I. Gerasimova, 1990. Mitomycin C induces genomic rearrangements involving transposable elements inDrosophila melanogaster. Mol. Gen. Genet. 220: 229–233.PubMedGoogle Scholar
- Georgiev, P. G., S. E. Korochkina, V. A. Mogila & T. I. Gerasimova, 1987. Mitomycin C induces transpositions of mobile elements inDrosophila melanogaster genome. D.I.S. 66: 61.Google Scholar
- Gerasimova, T. I., L. J. Mizroki & G. P. Georgiev, 1984. Transposition bursts in genetically unstableDrosophila melanogaster. Nature 309: 714–716.Google Scholar
- Gershenson, S. M., Y. N. Alexandrov & S. S. Maliuta, 1975. Mutagenic action of DNA and viruses inDrosophila. Academy of Sciences of the Ukrainian SSR, edited by Naukova Dumka, Kiev, 160 pp.Google Scholar
- Geyer, P. K., M. M. Green & V. G. Corces, 1988. Molecular basis of transposable element-induced mutations inDrosophila melanogaster. Banbury Rep. 30: 123–130.Google Scholar
- Golubovsky, M. D. & N. Plus, 1982. Mutability studies in twoDrosophila melanogaster isogenic stocks, endemic for C picornavirus and virus-free. Mut. Res. 103: 29–32.Google Scholar
- Gossen, J. & J. Vijg, 1993. Transgenic mice as model systems for studying gene mutationsin vivo. T.I.G. 9: 27–31.Google Scholar
- Gray, D. A., H. Weiher, T. Gridley, T. Noda, A. Sharpe & R. Jaenisch, 1992. Developmental mutations generated by retroviral insertional mutagenesis, pp. 55–59 in Mechanisms of Eukaryotic DNA Recombination, edited by M. E. Gottesman & H. J. Vogel. Academic Press, New York.Google Scholar
- Gupta, A. K. & J. Singh, 1974. Dichlorvos (DDVP) induced breaks in the salivary gland chromosomes ofDrosophila melanogaster. Curr. Sci. 43: 661–662.Google Scholar
- Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 3248–3252.PubMedGoogle Scholar
- Harrison, B. J. & J. R. S. Fincham, 1964. Instability at the Pal locus inAntirrhinum majus. I. Effects of environment on frequencies of somatic and germinal mutations. Heredity 19: 237–258.Google Scholar
- Heinemann, J. A., 1991. Genetics of gene transfer between species. T.I.G. 7: 181–185.Google Scholar
- Hirochika, H., 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.PubMedGoogle Scholar
- Hoffmann, A. A. & P. A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford, 284 pp.Google Scholar
- Hornemann, H., C. J. Otto, G. G. Hoffman & A. C. Bertinuson, 1987. Spectinomycin resistance and associated DNA amplification inStreptomyces achromogenes subsp.rubradiris. J. of Bacteriol. 169: 2360–2366.Google Scholar
- Hudson, A., R. Carpenter & E. S. Coen, 1987.De novo activation of the transposable element Tam2 ofAntirrhinum majus. Mol. Gen. Genet. 207: 54–59.Google Scholar
- Inoue, Y. H. & M. T. Yamamoto, 1987. Insertional DNA and spontaneous mutation at thewhite locus inDrosophila simulans. Mol. Gen. Genet. 209: 94–100.Google Scholar
- Itaya, M., 1993. Integration of repeated sequences (pBR322) in theBacillus subtilis 168 chromosome without affecting the genome structure. Mol. Gen. Genet. 241: 287–297.PubMedGoogle Scholar
- Jaenisch, R., A. Schnieke & K. Harbers, 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451–1455.PubMedGoogle Scholar
- James, M. G. & J. Stadler, 1989. Molecular characterization of Mutator systems in maize embryogenic callus cultures indicates Mu element activity in vitro. Theor. Appl. Genet. 77: 383–393.Google Scholar
- Jannière, L., B. Niaudet, E. Pierre & S. D. Ehrlich, 1985. Stable gene amplification in the chromosome ofBacillus subtilis. Gene 40: 447–491.Google Scholar
- Johns, M. A., J. Mottinger & M. Freeling, 1985. A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1102.PubMedGoogle Scholar
- Jones, J. S., 1989. Responses to chemical warfare. Nature 337: 690.Google Scholar
- Junakovic, N., C. Di Franco, P. Barsanti & G. Palumbo, 1986. Transposition of copia-like nomadic elements can be induced by heat-shock. J. Mol. Evol. 24: 89–93.Google Scholar
- Junakovic, N., C. Di Franco, P. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in culturedDrosophila cells. Chromosoma 97: 212–218.PubMedGoogle Scholar
- Kaidanov, L. Z., V. N. Bolshakov, P. N. Tzygvintzev & V. A. Gvozdev, 1991. The sources of genetic variability in highly inbred long-term selected strains ofDrosophila melanogaster. Genetica 85: 73–78.PubMedGoogle Scholar
- Kang, X., F. Yadao, R. D. Gietz & B. A. Kunz, 1992. Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and G-C→T-A transversions as well as transposition of the Ty element: implications for the control of spontaneous mutation. Genetics 130: 285–294.PubMedGoogle Scholar
- Kidwell, M. G. & J. M. C. Ribeiro, 1992. Can transposable elements be used to drive disease refractorines genes into vector populations? Parasitology Today 8: 325–329.PubMedGoogle Scholar
- Kikkawa, H., 1964. Genetical analysis on the resistance to parathion inDrosophila melanogaster. II. Induction of a resistant gene from its susceptible allele. Botyu-Kagaku 2: 37–41.Google Scholar
- Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability inDrosophila melanogaster. Mol. Gen. Genet. 224: 303–308.PubMedGoogle Scholar
- Kim, A. I. & E. S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg-4) and hobo in germ line and somatic cells of a genetically unstable mutator strain ofDrosophila melanogaster. Mol. Gen. Genet. 229: 437–444.PubMedGoogle Scholar
- Kinoshita, T., M. Takahashi & T. Mikami, 1979. Induction of cytoplasmic male sterility by chemical mutagens in sugarbeets (a preliminary report). Rep. of Kihara Institute for Biological Research 27–28: 66–71.Google Scholar
- Kleckner, N., 1990. Regulating Tn 10 and IS 10 transposition. Genetics 124: 449–454.Google Scholar
- Kramers, P. G. N. & A. G. A. C. Knaap, 1978. Absence of a mutagenic effect after feeding dichlorvos to larvae ofDrosophila melanogaster. Mut. Res. 57: 103–105.Google Scholar
- Lane Rayburn, A., D. P. Biradar, D. G. Bullock & L. M. McMurphy, 1993. Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300.Google Scholar
- Lenski, R. E. & J. E. Mittler, 1993. The directed mutation controversy and neo-darwinism. Science 259: 188–194.PubMedGoogle Scholar
- Lewis, A. P. & J. F. Y. Brookfield, 1987. Movement ofDrosophila melanogaster transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol. Gen. Genet. 208: 506–510.Google Scholar
- l'Hélias, C. & J. Proust, 1982. Mutations induced by a hormonal imbalance inDrosophila melanogaster. Mut. Res. 93: 125–148.Google Scholar
- Lillis, M. & M. Freeling, 1986. Mu transposons in maize. T.I.G. 7: 183–188.Google Scholar
- Margulies, L., D. I. Briscoe & S. S. Wallace, 1986. The relationship between radiation-induced and transposon-induced genetic damage duringDrosophila oogenesis. Mut. Res. 162: 55–68.Google Scholar
- Marinkovic, D., D. W. Crumpacker & V. M. Salceda, 1969. Genetic loads and cold temperature resistance inDrosophila pseudoobscura. The Amer. Nat. 103: 235–246.Google Scholar
- Masry, A. M., 1986. The evolutionary changes of the population structure. VII. The effect of some pesticides on genetic structure ofDrosophila melanogaster. Egypt. J. Genet. Cytol. 15: 1.Google Scholar
- McClintock, B., 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.PubMedGoogle Scholar
- McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40(3): 183–191.Google Scholar
- McDonald, J. F., S. F. Josephs, F. Wong-Staal & D. J. Strand, 1989. HIV-1 expression is posttranscriptionally repressed inDrosophila cells. Aids Research and Human Retroviruses 5: 79–85.PubMedGoogle Scholar
- Mével-Ninio, M., M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copiaretrotransposons inDrosophila melanogaster induces reversion of the ovoD dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.Google Scholar
- Mitrofanov, V. G., 1974. A study of temperature-sensitive mutations in thevirilis group ofDrosophila. II. Influence of temperature on the maternal effect of puffed in hybrids ofDrosophila virilis Sturtevant andD. littoralis Sokolov. Ontogenes 5: 485–491.Google Scholar
- Mori, I., D. G. Moerman & R. H. Waterston, 1990. Interstrain crosses enhance excision of Tc1 transposable elements inCaenorhabditis elegans. Mol. Gen. Genet. 220: 251–255.PubMedGoogle Scholar
- Morrison, W. W. & R. Milkman, 1978. Modification of heat resistance inDrosophila by selection. Nature 273: 49–50.PubMedGoogle Scholar
- Morton, R. A. & S. C. Hall, 1985. Response of dysgenic and nondysgenic populations to malathion exposure. D.I.S. 61: 126–128.Google Scholar
- Mottinger, J. P., S. L. Dellaporta & P. Keller, 1984. Stable and unstable mutations at the shrunken locus recovered from aberrant ratio lines in maize. Genetics 106: 751–767.Google Scholar
- Mottinger, J. P., M. A. Johns & M. Freeling, 1984. Mutations of the Adhl gene in maize following infection with barley stripe mosaic virus. Mol. Gen. Genet. 195: 367–369.PubMedGoogle Scholar
- Mouchès, C., N. Pasteur, J. B. Bergé, O. Hyrien, M. Raymond, B. R. de Saint Vincent, M. de Silvestri & G. P. Georghiou, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a CaliforniaCulex mosquito. Science 233: 778–780.PubMedGoogle Scholar
- Muller, H. J., 1927. Artificial transmutation of the gene. Science 66: 84–87.Google Scholar
- Nomura, T., 1982. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature 296: 575–577.PubMedGoogle Scholar
- Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability inDrosophila melanogaster. I. Recessive lethal mutations. Genetics 87: 519–527.PubMedGoogle Scholar
- Pan, Y. B. & P. Peterson, 1988. Spontaneous activation of quiescent Uq transposable elements during endosperm development inZea mays. Genetics 119: 457–464.Google Scholar
- Paquin, C. E. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposons. Science 226: 53–54.Google Scholar
- Parkash, O., 1967. Mutagenic effect of irradiated DNA inDrosophila melanogaster. Nature 214: 611–612.Google Scholar
- Parker-Thornburg, J. & J. J. Bonner, 1987. Mutations that induce the heat shock response ofDrosophila. Cell 51: 763–772.PubMedGoogle Scholar
- Parsons, P. A., 1973. Genetics of resistance to environmental stresses inDrosophila populations. Ann. Rev. Genet. 7: 239–265.PubMedGoogle Scholar
- Parsons, P. A., 1993. Developmental variability and the limits of adaptation: interactions with stress. Genetica 89: 245–253.Google Scholar
- Pasyukova, E. G., E. S. Belyaeva, L. E. Ilyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbredDrosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.Google Scholar
- Pasyukova, E. G. & S. V. Nuzhdin, 1993. Doc and copia instability in an isogenicDrosophila melanogaster stock. Mol. Gen. Genet. 240: 302–306.PubMedGoogle Scholar
- Peschke, V. M., R. L. Phillips & B. G. Gengenbach, 1987. Discovery of transposable element activity among progeny of tissue culturederived maize plants. Science 238: 804–807.Google Scholar
- Peterson, P. A., 1985. Virus-induced mutations in maize; on the nature of stress-induction of unstable loci. Genet. Res. Camb. 46: 207–217.Google Scholar
- Planckaert, F. & V. Walbot, 1989. Molecular and genetic characterization of Mu transposable elements inZea mays: behavior in callus culture and regenerated plants. Genetics 123: 567–578.PubMedGoogle Scholar
- Proust, J. P., K. Sankaranarayanan & F. H. Sobels, 1972. The effects of treatingDrosophila females with actinomycin-D on the yields of dominant lethals, translocations and recessive lethals recovered from X-irradiated spermatozoa. Mut. Res. 16: 65–76.Google Scholar
- Ratner, V. A., S. A. Zabanov, O. V. Kolensnikova & L. A. Vasilyeva, 1992. Induction of the mobile genetic element Dm 412 transposition in theDrosophila genome by heat shock treatment. Proc. Natl. Acad. Sci. USA 89: 5650–5654.PubMedGoogle Scholar
- Rendel, J. M. & B. L. Sheldon, 1956. The effect of cold treatment on mutation inDrosophila melanogaster. Anim. Genet. Section CSIRO Sydney: 566–573.Google Scholar
- Rolfe, M., A. Spanos & G. Banks, 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339–340.Google Scholar
- Rosen, E., Sivertsen, A. & R. A. Firtel, 1983. An unusual transposon encoding heat shock inducible and developmentally regulated transcripts inDictyostelium. Cell 35: 243–251.PubMedGoogle Scholar
- Roth, E. J., B. L. Frazier, N. R. Apuya & K. G. Lark, 1989. Genetic variation in an inbred plant: variation in tissue cultures of soybean (Glycine max (L.) (Merrill). Genetics 121: 359–368.PubMedGoogle Scholar
- Rubin, G. M., 1983. Dispersed repetitive DNAs inDrosophila, pp. 329–361 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
- Rubin, G. M. & A. C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.PubMedGoogle Scholar
- Ryo, H., T. Shiba, A. Fukunaga, S. Kondo & E. Gateff, 1984. Chromosomal aberrations and retrovirus-like particles produced by in vivo transplantation in neoplastic brain cells of aDrosophila mutant strain. Gann 75: 22–28.PubMedGoogle Scholar
- Sankaranayanan, K., 1986. Transposable genetic elements, spontaneous mutations and the doubling-dose method of radiation genetic risk evaluation in man. Mut. Res. 160: 73–86.Google Scholar
- Sapunov, V. B., 1982. Interline differences of juvenile hormone activity inD. melanogaster. D.I.S. 58: 132.Google Scholar
- Scheller, K. & P. Karlson, 1977. Synthesis of poly (A) containing RNA induced by ecdysterone in fat body cells ofCalliphora vicina. J. Insect Physiol. 23: 435–440.PubMedGoogle Scholar
- Schiff, R., A. Itin & E. Keshet, 1991. Transcriptional activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormones. Genes & Dev. 5: 521–532.Google Scholar
- Shandala, T. V. & S. M. Gershenson, 1988. Multiple transpositions of copia-like elements in a system of unstable mutations induced by exogenous DNA inDrosophila. Genome 30: 31.PubMedGoogle Scholar
- Sprague, G. F. & H. H. McKinney, 1966. Aberrant ratio: an anomaly associated with virus infection. Genetics 31: 1287–1296.Google Scholar
- Stocker, A. J. & C. Pavan, 1974. The influence of ecdysterone on gene amplification, DNA synthesis, and puff formation in the salivary gland chromosomes ofRhynchosciara hollaenderi. Chromosoma 45: 295–319.PubMedGoogle Scholar
- Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Ac. Res. 13: 4401–4410.Google Scholar
- Tatozyan, A. G., S. D. Nabirochkin, A. K. Shakhbazyan, K. G. Gazarayan & F. L. Kisseljov, 1984. Detection of virus-specific sequences inDrosophila melanogaster mutants induced by injection of RSV DNA into early embryos. Nature 311: 394–395.PubMedGoogle Scholar
- Tchenio, T. & T. Heidmann, 1991. Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65: 2113–2118.PubMedGoogle Scholar
- Tchurikov, N. A., T. I. Gerasimova, S. G. Georgieva, L. J. Mizrokhi, P. V. Georgiev & Y. V. Ilyin, 1988. Concerted transposition inDrosophila melanogaster. Banbury Rep. 30: 103–113.Google Scholar
- Tracey, M. L. & B. Dempsey, 1981. Recombination rate variability inD. melanogaster females subjected to temperature stress. Jour. of Heredity 72: 427–428.Google Scholar
- Ushakov, B. P., I. S. Amosova, I. S. Chernokozheva, I. N. Dregolskaya, I. M. Pashkova & E. D. Skholl, 1977. The environmental temperature and physiological polymorphism of populations. III. Heat acclimation and the population response to selection caused by heating. J. Thermal Biol. 2: 17–22.Google Scholar
- Varmus, H. & P. Brown, 1989. Retroviruses, pp. 53–108 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington D.C.Google Scholar
- Vogelstein, B. & K. W. Kinzler, 1993. The multistep nature of cancer. T.I.G. 9: 138–141.Google Scholar
- Walbot, V., 1988. Reactivation of the mutator transposable element system following gamma irradiation of seed. Mol. Gen. Genet. 212: 259–264.Google Scholar
- Walbot, V. & C. A. Cullis, 1985. Rapid genomic change in higher plants. Ann. Rev. Plant. Physiol. 36: 367–396.Google Scholar
- Wallace, B. M. & J. S. Lasker, 1992. Awakenings ... UV light and HIV gene activation. Science 257: 1211–1212.PubMedGoogle Scholar
- Wilson, T. G., 1993. Transposable elements as initiators of insecticide resistance. J. Econ. Entom. 86: 645–651.PubMedGoogle Scholar
- Woodruff, R. C., J. L. Blount & J. N. Thompson Jr., 1987. Hybrid dysgenesis inD. melanogaster is not a general release mechanism for DNA transpositions. Science 237: 1206–1208.PubMedGoogle Scholar
- Xu, H. & J. D. Boeke, 1991. Inhibition of Ty 1 transposition by mating pheromones inSaccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.PubMedGoogle Scholar
- Yannopoulos, G., N. Stamatis, M. Monasterioti & P. Hatzopoulos, 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains ofDrosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49: 487–495.PubMedGoogle Scholar
- Yun, Y. & R. L. Davis, 1989. Copia RNA levels are elevated indunce mutants and modulated by cAMP. Nucl. Ac. Res. 17: 8313–8326.Google Scholar
- Zuitin, A. I., 1938. The influence of the change of the thermal regime upon the frequency of occurrence of lethal mutations inDrosophila melanogaster. C. R. Acad. Sci. URSS 21: 53–55.Google Scholar