Advertisement

Genetica

, Volume 93, Issue 1–3, pp 149–160 | Cite as

Genome and stresses: Reactions against aggressions, behavior of transposable elements

  • C. Arnault
  • I. Dufournel
Article

Abstract

The action of stresses on the genome can be considered as responses of cells or organisms to external aggressions. Stress factors are of environmental origin (climatic or trophic) or of genomic nature (introduction of foreign genetic material, for example). In both cases, important perturbations can occur and modify hereditary potentialities, creating new combinations compatible with survival; such a situation may increase the variability of the genome, and allow evolutive processes to take place. The behavior of transposable elements under stress conditions is thus of particular interest, since these sequences are sources of mutations and therefore of genetic variability; they may play an important role in population adaptation. The survey of the available experimental results suggests that, although some examples of mutations and transposable elements movements induced by external factors are clearly described, environmental injuries or introduction of foreign material into a genome are not systematically followed by drastic genomic changes.

Key words

environment genome stress transposable elements Drosophila 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, Y. N. & M. D. Golubovsky, 1983. The multisite mutations induced by viruses and foreign DNA can spread in natural populations ofDrosophila. D.I.S. 59: 10–11.Google Scholar
  2. Arnault, C. & C. Biémont, 1989. Heat shocks do not mobilize mobile elements in genomes ofDrosophila melanogaster inbred lines. J. Mol. Evol. 28: 388–390.PubMedGoogle Scholar
  3. Arnault, C., A. Heizmann, C. Lœvenbruck & C. Biémont, 1991. Environmental stresses and mobilization of transposable elements in inbred lines ofDrosophila melanogaster. Mut. Res. 248: 51–60.Google Scholar
  4. Ashburner, M. & J. J. Bonner, 1979. The induction of gene activity inDrosophila by heat shock. Cell 17: 241–254.PubMedGoogle Scholar
  5. Barker, D. D., H. Wu, S. Hartung, M. Breindl & R. Jaenisch, 1991. Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov 13 mice. Mol. Cell. Biol. 11: 5154–5163.PubMedGoogle Scholar
  6. Baumiller, R. C., 1967. Virus induced point mutation. Nature 214: 806–807.PubMedGoogle Scholar
  7. Berg, R. L., 1982. Mutability changes inDrosophila melanogaster populations of Europe, Asia, and North America and probable mutability changes in human populations of the USSR. Jpn. J. Genet. 57: 171–183.Google Scholar
  8. Biémont, C., 1992. Population genetics of transposable elements. ADrosophila point of view. Genetica 86: 67–84.PubMedGoogle Scholar
  9. Biémont, C., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line ofDrosophila melanogaster. Nature 329: 742–744.PubMedGoogle Scholar
  10. Biémont, C., A. Aouar & C. Arnault, 1988. Transposition of copia elements inDrosophila. Nature 332: 21–22.PubMedGoogle Scholar
  11. Biémont, C., C. Arnault, A. Heizmann & S. Ronsseray, 1990. Massive changes in genomic locations of P elements in an inbred line ofDrosophila melanogaster. Naturwissenschaften 77: 485–488.PubMedGoogle Scholar
  12. Blackman, R. K., R. Grimaila, M. Macy, D. Koehler & W. M. Gilbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system inDrosophila melanogaster. Cell 49: 497–505.PubMedGoogle Scholar
  13. Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.PubMedGoogle Scholar
  14. Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
  15. Bucala, R., A. T. Lee, L. rourke & A. Cerami, 1993. Transposition of an Alu-containing element induced by DNA-advanced glycosylation endoproducts. Proc. Natl. Acad. Sci. USA 90: 2666–2670.PubMedGoogle Scholar
  16. Burdette, W. J. & J. S. Yoon, 1967. Mutations, chromosomal aberrations, and tumors in insects treated with oncogenic virus. Science 155: 340–341.PubMedGoogle Scholar
  17. Burr, B. & F. A. Burr, 1988. Activation of silent transposable elements. Plant Transposable Elements 47: 317–323.Google Scholar
  18. Carpenter, R., C. Martin & E. S. Coen, 1987. Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci inAntirrhinum majus. Mol. Gen. Genet. 207: 82–89.Google Scholar
  19. Chopra, V. L., 1970. DNA feeding and directed mutagenesis inDrosophila melanogaster. Genet. Res. Camb. 15: 345–346.Google Scholar
  20. Collins, J., B. Saari & P. Anderson, 1987. Activation of a transposable element in the germ line but not the soma ofCaenorhabditis elegans. nature 328: 726–728.PubMedGoogle Scholar
  21. Coudere, J. L., J. L. Becker, M. L. Sobrier, B. Dastugue, M. Best-Belpomme, J. A. Lepesant & M. L. Pardue, 1984. Isolation and chromosomal localization of ecdysterone-responsive genes in aDrosophila cell line. Chromosoma 89: 338–342.Google Scholar
  22. Cullis, C. A., 1986. Phenotytic consequences of environmentally induced changes in plant DNA. T.I.G. 24: 307–309.Google Scholar
  23. Dellaporta, S. L., P. S. Chomet, J. P. Mottinger, J. A. Wood, S. M. Yu & J. B. Hicks, 1984. Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. 49: 321–328.Google Scholar
  24. Di Franco, C., C. Pisano, F. Fourcade-Péronnet, G. Echalier & N. Junakovic, 1992. Evidence forde novo rearrangements ofDrosophila transposable elements induced by the passage to the cell culture. Genetica 87: 65–73.PubMedGoogle Scholar
  25. Eeken J. C. J. & F. H. Sobels, 1986. The effect of X-irradiation and formaldehyde treatment of spermatogonia on the reversion of an unstable, P-element insertion mutation inDrosophila melanogaster. Mut. Res. 175: 61–65.Google Scholar
  26. Eggleston W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families inD. melanogaster. Nature 331: 368–370.PubMedGoogle Scholar
  27. Fahmy, O. G. & M. J. Fahmy, 1966. The nature and distribution of the mutations induced by unirradiated and irradiated heterologous deoxyribonucleic acid inDrosophila melanogaster. Genetics 34: 1123–1138.Google Scholar
  28. Fincham, J. R. S. & G. R. K. Sastry, 1974. Controlling elements in maize. Ann. Rev. Genet. 8: 15–50.PubMedGoogle Scholar
  29. Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. T.I.G. 5: 103–107.Google Scholar
  30. Fox, A. S. & S. B. Yoon, 1968. On the mechanisms of DNA effects in eukaryotes. Proc. 12th Internat. Congr. Genet. 1: 87.Google Scholar
  31. Fujikawa, K. & S. Kondo, 1986. DNA repair dependence of somatic mutagenesis of transposon-caused white alleles inDrosophila melanogaster after treatment with alkylating agents. Genetics 112: 505–522.PubMedGoogle Scholar
  32. Garbe, J. C. & M. L. Pardue, 1986. Heat shock locus 93D ofDrosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83: 1812–1816.PubMedGoogle Scholar
  33. Gazaryan, K. G., V. A. Golitsov, S. D. Nabirochkin, L. G. Eshkind, V. Z. Tarantul, L. V. Lening & L. S. Popov, 1985. Introduction of DNA sequences of Rous Sarcoma Virus intoDrosophila and mouse genomes by microinjection into egg cell. Molecular Biology Translation of Moleculyarnaya Biologiya 19: 632–638.Google Scholar
  34. Gazaryan, K. G., S. D. Nabirochkin, E. N. Shibanova, A. G. Tatosyan, F. L. Kisselev, N. S. Ambartsumian, T. I. Tikhonenko & V. A. Goltzov, 1987. Unstable visible mutations induced inDrosophila melanogaster by injections of oncogenic virus DNA into the polar plasm of early embryos. Mol. Gen. Genet. 207: 130–141.PubMedGoogle Scholar
  35. Gazaryan, K. G., S. D. Nabirochkin, A. G. Tatosyan, A. K. Shahbazyan & E. N. Shibanova, 1984. Genetic effects of injection of Rous Sarcoma Virus DNA into polar plasm of earlyDrosophila melanogaster embryos. Nature 311: 392–394.PubMedGoogle Scholar
  36. Gazaryan, K. G., A. K. Shahbazyan, N. Yu. Sakhanova & S. G. Smirnova, 1982. Mulations obtained inDrosophila after microinjections of Rous Sarcoma Viruses into early embryos. D.I.S. 58: 54–55.Google Scholar
  37. Georgiev, P. G., S. E. Korochkina, S. G. Georgieva & T. I. Gerasimova, 1990. Mitomycin C induces genomic rearrangements involving transposable elements inDrosophila melanogaster. Mol. Gen. Genet. 220: 229–233.PubMedGoogle Scholar
  38. Georgiev, P. G., S. E. Korochkina, V. A. Mogila & T. I. Gerasimova, 1987. Mitomycin C induces transpositions of mobile elements inDrosophila melanogaster genome. D.I.S. 66: 61.Google Scholar
  39. Gerasimova, T. I., L. J. Mizroki & G. P. Georgiev, 1984. Transposition bursts in genetically unstableDrosophila melanogaster. Nature 309: 714–716.Google Scholar
  40. Gershenson, S. M., Y. N. Alexandrov & S. S. Maliuta, 1975. Mutagenic action of DNA and viruses inDrosophila. Academy of Sciences of the Ukrainian SSR, edited by Naukova Dumka, Kiev, 160 pp.Google Scholar
  41. Geyer, P. K., M. M. Green & V. G. Corces, 1988. Molecular basis of transposable element-induced mutations inDrosophila melanogaster. Banbury Rep. 30: 123–130.Google Scholar
  42. Golubovsky, M. D. & N. Plus, 1982. Mutability studies in twoDrosophila melanogaster isogenic stocks, endemic for C picornavirus and virus-free. Mut. Res. 103: 29–32.Google Scholar
  43. Gossen, J. & J. Vijg, 1993. Transgenic mice as model systems for studying gene mutationsin vivo. T.I.G. 9: 27–31.Google Scholar
  44. Gray, D. A., H. Weiher, T. Gridley, T. Noda, A. Sharpe & R. Jaenisch, 1992. Developmental mutations generated by retroviral insertional mutagenesis, pp. 55–59 in Mechanisms of Eukaryotic DNA Recombination, edited by M. E. Gottesman & H. J. Vogel. Academic Press, New York.Google Scholar
  45. Gupta, A. K. & J. Singh, 1974. Dichlorvos (DDVP) induced breaks in the salivary gland chromosomes ofDrosophila melanogaster. Curr. Sci. 43: 661–662.Google Scholar
  46. Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 3248–3252.PubMedGoogle Scholar
  47. Harrison, B. J. & J. R. S. Fincham, 1964. Instability at the Pal locus inAntirrhinum majus. I. Effects of environment on frequencies of somatic and germinal mutations. Heredity 19: 237–258.Google Scholar
  48. Heinemann, J. A., 1991. Genetics of gene transfer between species. T.I.G. 7: 181–185.Google Scholar
  49. Hirochika, H., 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.PubMedGoogle Scholar
  50. Hoffmann, A. A. & P. A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford, 284 pp.Google Scholar
  51. Hornemann, H., C. J. Otto, G. G. Hoffman & A. C. Bertinuson, 1987. Spectinomycin resistance and associated DNA amplification inStreptomyces achromogenes subsp.rubradiris. J. of Bacteriol. 169: 2360–2366.Google Scholar
  52. Hudson, A., R. Carpenter & E. S. Coen, 1987.De novo activation of the transposable element Tam2 ofAntirrhinum majus. Mol. Gen. Genet. 207: 54–59.Google Scholar
  53. Inoue, Y. H. & M. T. Yamamoto, 1987. Insertional DNA and spontaneous mutation at thewhite locus inDrosophila simulans. Mol. Gen. Genet. 209: 94–100.Google Scholar
  54. Itaya, M., 1993. Integration of repeated sequences (pBR322) in theBacillus subtilis 168 chromosome without affecting the genome structure. Mol. Gen. Genet. 241: 287–297.PubMedGoogle Scholar
  55. Jaenisch, R., A. Schnieke & K. Harbers, 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451–1455.PubMedGoogle Scholar
  56. James, M. G. & J. Stadler, 1989. Molecular characterization of Mutator systems in maize embryogenic callus cultures indicates Mu element activity in vitro. Theor. Appl. Genet. 77: 383–393.Google Scholar
  57. Jannière, L., B. Niaudet, E. Pierre & S. D. Ehrlich, 1985. Stable gene amplification in the chromosome ofBacillus subtilis. Gene 40: 447–491.Google Scholar
  58. Johns, M. A., J. Mottinger & M. Freeling, 1985. A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1102.PubMedGoogle Scholar
  59. Jones, J. S., 1989. Responses to chemical warfare. Nature 337: 690.Google Scholar
  60. Junakovic, N., C. Di Franco, P. Barsanti & G. Palumbo, 1986. Transposition of copia-like nomadic elements can be induced by heat-shock. J. Mol. Evol. 24: 89–93.Google Scholar
  61. Junakovic, N., C. Di Franco, P. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in culturedDrosophila cells. Chromosoma 97: 212–218.PubMedGoogle Scholar
  62. Kaidanov, L. Z., V. N. Bolshakov, P. N. Tzygvintzev & V. A. Gvozdev, 1991. The sources of genetic variability in highly inbred long-term selected strains ofDrosophila melanogaster. Genetica 85: 73–78.PubMedGoogle Scholar
  63. Kang, X., F. Yadao, R. D. Gietz & B. A. Kunz, 1992. Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and G-C→T-A transversions as well as transposition of the Ty element: implications for the control of spontaneous mutation. Genetics 130: 285–294.PubMedGoogle Scholar
  64. Kidwell, M. G. & J. M. C. Ribeiro, 1992. Can transposable elements be used to drive disease refractorines genes into vector populations? Parasitology Today 8: 325–329.PubMedGoogle Scholar
  65. Kikkawa, H., 1964. Genetical analysis on the resistance to parathion inDrosophila melanogaster. II. Induction of a resistant gene from its susceptible allele. Botyu-Kagaku 2: 37–41.Google Scholar
  66. Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability inDrosophila melanogaster. Mol. Gen. Genet. 224: 303–308.PubMedGoogle Scholar
  67. Kim, A. I. & E. S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg-4) and hobo in germ line and somatic cells of a genetically unstable mutator strain ofDrosophila melanogaster. Mol. Gen. Genet. 229: 437–444.PubMedGoogle Scholar
  68. Kinoshita, T., M. Takahashi & T. Mikami, 1979. Induction of cytoplasmic male sterility by chemical mutagens in sugarbeets (a preliminary report). Rep. of Kihara Institute for Biological Research 27–28: 66–71.Google Scholar
  69. Kleckner, N., 1990. Regulating Tn 10 and IS 10 transposition. Genetics 124: 449–454.Google Scholar
  70. Kramers, P. G. N. & A. G. A. C. Knaap, 1978. Absence of a mutagenic effect after feeding dichlorvos to larvae ofDrosophila melanogaster. Mut. Res. 57: 103–105.Google Scholar
  71. Lane Rayburn, A., D. P. Biradar, D. G. Bullock & L. M. McMurphy, 1993. Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300.Google Scholar
  72. Lenski, R. E. & J. E. Mittler, 1993. The directed mutation controversy and neo-darwinism. Science 259: 188–194.PubMedGoogle Scholar
  73. Lewis, A. P. & J. F. Y. Brookfield, 1987. Movement ofDrosophila melanogaster transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol. Gen. Genet. 208: 506–510.Google Scholar
  74. l'Hélias, C. & J. Proust, 1982. Mutations induced by a hormonal imbalance inDrosophila melanogaster. Mut. Res. 93: 125–148.Google Scholar
  75. Lillis, M. & M. Freeling, 1986. Mu transposons in maize. T.I.G. 7: 183–188.Google Scholar
  76. Margulies, L., D. I. Briscoe & S. S. Wallace, 1986. The relationship between radiation-induced and transposon-induced genetic damage duringDrosophila oogenesis. Mut. Res. 162: 55–68.Google Scholar
  77. Marinkovic, D., D. W. Crumpacker & V. M. Salceda, 1969. Genetic loads and cold temperature resistance inDrosophila pseudoobscura. The Amer. Nat. 103: 235–246.Google Scholar
  78. Masry, A. M., 1986. The evolutionary changes of the population structure. VII. The effect of some pesticides on genetic structure ofDrosophila melanogaster. Egypt. J. Genet. Cytol. 15: 1.Google Scholar
  79. McClintock, B., 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.PubMedGoogle Scholar
  80. McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40(3): 183–191.Google Scholar
  81. McDonald, J. F., S. F. Josephs, F. Wong-Staal & D. J. Strand, 1989. HIV-1 expression is posttranscriptionally repressed inDrosophila cells. Aids Research and Human Retroviruses 5: 79–85.PubMedGoogle Scholar
  82. Mével-Ninio, M., M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copiaretrotransposons inDrosophila melanogaster induces reversion of the ovoD dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.Google Scholar
  83. Mitrofanov, V. G., 1974. A study of temperature-sensitive mutations in thevirilis group ofDrosophila. II. Influence of temperature on the maternal effect of puffed in hybrids ofDrosophila virilis Sturtevant andD. littoralis Sokolov. Ontogenes 5: 485–491.Google Scholar
  84. Mori, I., D. G. Moerman & R. H. Waterston, 1990. Interstrain crosses enhance excision of Tc1 transposable elements inCaenorhabditis elegans. Mol. Gen. Genet. 220: 251–255.PubMedGoogle Scholar
  85. Morrison, W. W. & R. Milkman, 1978. Modification of heat resistance inDrosophila by selection. Nature 273: 49–50.PubMedGoogle Scholar
  86. Morton, R. A. & S. C. Hall, 1985. Response of dysgenic and nondysgenic populations to malathion exposure. D.I.S. 61: 126–128.Google Scholar
  87. Mottinger, J. P., S. L. Dellaporta & P. Keller, 1984. Stable and unstable mutations at the shrunken locus recovered from aberrant ratio lines in maize. Genetics 106: 751–767.Google Scholar
  88. Mottinger, J. P., M. A. Johns & M. Freeling, 1984. Mutations of the Adhl gene in maize following infection with barley stripe mosaic virus. Mol. Gen. Genet. 195: 367–369.PubMedGoogle Scholar
  89. Mouchès, C., N. Pasteur, J. B. Bergé, O. Hyrien, M. Raymond, B. R. de Saint Vincent, M. de Silvestri & G. P. Georghiou, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a CaliforniaCulex mosquito. Science 233: 778–780.PubMedGoogle Scholar
  90. Muller, H. J., 1927. Artificial transmutation of the gene. Science 66: 84–87.Google Scholar
  91. Nomura, T., 1982. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature 296: 575–577.PubMedGoogle Scholar
  92. Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability inDrosophila melanogaster. I. Recessive lethal mutations. Genetics 87: 519–527.PubMedGoogle Scholar
  93. Pan, Y. B. & P. Peterson, 1988. Spontaneous activation of quiescent Uq transposable elements during endosperm development inZea mays. Genetics 119: 457–464.Google Scholar
  94. Paquin, C. E. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposons. Science 226: 53–54.Google Scholar
  95. Parkash, O., 1967. Mutagenic effect of irradiated DNA inDrosophila melanogaster. Nature 214: 611–612.Google Scholar
  96. Parker-Thornburg, J. & J. J. Bonner, 1987. Mutations that induce the heat shock response ofDrosophila. Cell 51: 763–772.PubMedGoogle Scholar
  97. Parsons, P. A., 1973. Genetics of resistance to environmental stresses inDrosophila populations. Ann. Rev. Genet. 7: 239–265.PubMedGoogle Scholar
  98. Parsons, P. A., 1993. Developmental variability and the limits of adaptation: interactions with stress. Genetica 89: 245–253.Google Scholar
  99. Pasyukova, E. G., E. S. Belyaeva, L. E. Ilyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbredDrosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.Google Scholar
  100. Pasyukova, E. G. & S. V. Nuzhdin, 1993. Doc and copia instability in an isogenicDrosophila melanogaster stock. Mol. Gen. Genet. 240: 302–306.PubMedGoogle Scholar
  101. Peschke, V. M., R. L. Phillips & B. G. Gengenbach, 1987. Discovery of transposable element activity among progeny of tissue culturederived maize plants. Science 238: 804–807.Google Scholar
  102. Peterson, P. A., 1985. Virus-induced mutations in maize; on the nature of stress-induction of unstable loci. Genet. Res. Camb. 46: 207–217.Google Scholar
  103. Planckaert, F. & V. Walbot, 1989. Molecular and genetic characterization of Mu transposable elements inZea mays: behavior in callus culture and regenerated plants. Genetics 123: 567–578.PubMedGoogle Scholar
  104. Proust, J. P., K. Sankaranarayanan & F. H. Sobels, 1972. The effects of treatingDrosophila females with actinomycin-D on the yields of dominant lethals, translocations and recessive lethals recovered from X-irradiated spermatozoa. Mut. Res. 16: 65–76.Google Scholar
  105. Ratner, V. A., S. A. Zabanov, O. V. Kolensnikova & L. A. Vasilyeva, 1992. Induction of the mobile genetic element Dm 412 transposition in theDrosophila genome by heat shock treatment. Proc. Natl. Acad. Sci. USA 89: 5650–5654.PubMedGoogle Scholar
  106. Rendel, J. M. & B. L. Sheldon, 1956. The effect of cold treatment on mutation inDrosophila melanogaster. Anim. Genet. Section CSIRO Sydney: 566–573.Google Scholar
  107. Rolfe, M., A. Spanos & G. Banks, 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339–340.Google Scholar
  108. Rosen, E., Sivertsen, A. & R. A. Firtel, 1983. An unusual transposon encoding heat shock inducible and developmentally regulated transcripts inDictyostelium. Cell 35: 243–251.PubMedGoogle Scholar
  109. Roth, E. J., B. L. Frazier, N. R. Apuya & K. G. Lark, 1989. Genetic variation in an inbred plant: variation in tissue cultures of soybean (Glycine max (L.) (Merrill). Genetics 121: 359–368.PubMedGoogle Scholar
  110. Rubin, G. M., 1983. Dispersed repetitive DNAs inDrosophila, pp. 329–361 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
  111. Rubin, G. M. & A. C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.PubMedGoogle Scholar
  112. Ryo, H., T. Shiba, A. Fukunaga, S. Kondo & E. Gateff, 1984. Chromosomal aberrations and retrovirus-like particles produced by in vivo transplantation in neoplastic brain cells of aDrosophila mutant strain. Gann 75: 22–28.PubMedGoogle Scholar
  113. Sankaranayanan, K., 1986. Transposable genetic elements, spontaneous mutations and the doubling-dose method of radiation genetic risk evaluation in man. Mut. Res. 160: 73–86.Google Scholar
  114. Sapunov, V. B., 1982. Interline differences of juvenile hormone activity inD. melanogaster. D.I.S. 58: 132.Google Scholar
  115. Scheller, K. & P. Karlson, 1977. Synthesis of poly (A) containing RNA induced by ecdysterone in fat body cells ofCalliphora vicina. J. Insect Physiol. 23: 435–440.PubMedGoogle Scholar
  116. Schiff, R., A. Itin & E. Keshet, 1991. Transcriptional activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormones. Genes & Dev. 5: 521–532.Google Scholar
  117. Shandala, T. V. & S. M. Gershenson, 1988. Multiple transpositions of copia-like elements in a system of unstable mutations induced by exogenous DNA inDrosophila. Genome 30: 31.PubMedGoogle Scholar
  118. Sprague, G. F. & H. H. McKinney, 1966. Aberrant ratio: an anomaly associated with virus infection. Genetics 31: 1287–1296.Google Scholar
  119. Stocker, A. J. & C. Pavan, 1974. The influence of ecdysterone on gene amplification, DNA synthesis, and puff formation in the salivary gland chromosomes ofRhynchosciara hollaenderi. Chromosoma 45: 295–319.PubMedGoogle Scholar
  120. Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Ac. Res. 13: 4401–4410.Google Scholar
  121. Tatozyan, A. G., S. D. Nabirochkin, A. K. Shakhbazyan, K. G. Gazarayan & F. L. Kisseljov, 1984. Detection of virus-specific sequences inDrosophila melanogaster mutants induced by injection of RSV DNA into early embryos. Nature 311: 394–395.PubMedGoogle Scholar
  122. Tchenio, T. & T. Heidmann, 1991. Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65: 2113–2118.PubMedGoogle Scholar
  123. Tchurikov, N. A., T. I. Gerasimova, S. G. Georgieva, L. J. Mizrokhi, P. V. Georgiev & Y. V. Ilyin, 1988. Concerted transposition inDrosophila melanogaster. Banbury Rep. 30: 103–113.Google Scholar
  124. Tracey, M. L. & B. Dempsey, 1981. Recombination rate variability inD. melanogaster females subjected to temperature stress. Jour. of Heredity 72: 427–428.Google Scholar
  125. Ushakov, B. P., I. S. Amosova, I. S. Chernokozheva, I. N. Dregolskaya, I. M. Pashkova & E. D. Skholl, 1977. The environmental temperature and physiological polymorphism of populations. III. Heat acclimation and the population response to selection caused by heating. J. Thermal Biol. 2: 17–22.Google Scholar
  126. Varmus, H. & P. Brown, 1989. Retroviruses, pp. 53–108 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington D.C.Google Scholar
  127. Vogelstein, B. & K. W. Kinzler, 1993. The multistep nature of cancer. T.I.G. 9: 138–141.Google Scholar
  128. Walbot, V., 1988. Reactivation of the mutator transposable element system following gamma irradiation of seed. Mol. Gen. Genet. 212: 259–264.Google Scholar
  129. Walbot, V. & C. A. Cullis, 1985. Rapid genomic change in higher plants. Ann. Rev. Plant. Physiol. 36: 367–396.Google Scholar
  130. Wallace, B. M. & J. S. Lasker, 1992. Awakenings ... UV light and HIV gene activation. Science 257: 1211–1212.PubMedGoogle Scholar
  131. Wilson, T. G., 1993. Transposable elements as initiators of insecticide resistance. J. Econ. Entom. 86: 645–651.PubMedGoogle Scholar
  132. Woodruff, R. C., J. L. Blount & J. N. Thompson Jr., 1987. Hybrid dysgenesis inD. melanogaster is not a general release mechanism for DNA transpositions. Science 237: 1206–1208.PubMedGoogle Scholar
  133. Xu, H. & J. D. Boeke, 1991. Inhibition of Ty 1 transposition by mating pheromones inSaccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.PubMedGoogle Scholar
  134. Yannopoulos, G., N. Stamatis, M. Monasterioti & P. Hatzopoulos, 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains ofDrosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49: 487–495.PubMedGoogle Scholar
  135. Yun, Y. & R. L. Davis, 1989. Copia RNA levels are elevated indunce mutants and modulated by cAMP. Nucl. Ac. Res. 17: 8313–8326.Google Scholar
  136. Zuitin, A. I., 1938. The influence of the change of the thermal regime upon the frequency of occurrence of lethal mutations inDrosophila melanogaster. C. R. Acad. Sci. URSS 21: 53–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • C. Arnault
    • 1
  • I. Dufournel
    • 1
  1. 1.Laboratoire de Biométrie, Génétique et Biologie des Populations, URA CNRS 243Université Claude Bernard Lyon IVilleurbanne CedexFrance

Personalised recommendations