, Volume 90, Issue 1, pp 9–16 | Cite as

Hybrid dysgenesis in natural populations ofDrosophila melanogaster in Japan

III. The P-M system in and around Japan
  • E. T. Matsuura
  • S. Takada
  • H. Kato
  • S. Niizeki
  • S. I. Chigusa


The P-M system of hybrid dysgenesis inDrosophila melanogaster was investigated on the basis of gonadal dysgenesis, using 1,590 strains from 28 natural populations in Japan, and 20 populations from Southeast Asia, the Pacific area and Africa. Strong P strains were found sporadically in several populations in Japan. Few strong M strains were observed. Q strains were present at a high frequency in most populations. Thus, most populations in these areas were regarded as Q populations. The distribution of the P element and the evolution of P, Q and M populations are also discussed.

Key words

Drosophila melanogaster hybrid dysgenesis natural population P element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anxolabéhère, D., K. Hu, D. Nouaud & G. Périquet, 1990. The distribution of the P-M system inDrosophila melanogaster strains from the People's Republic of China. Genet. Sel. Evol. 22: 175–188.Google Scholar
  2. Anxolabéhère, D., M. G. Kidwell & G. Périquet, 1988. Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion ofDrosophila melanogaster by mobile P elements. Mol. Biol. Evol. 5: 252–269.PubMedGoogle Scholar
  3. Anxolabéhère, D., D. Nouaud & G. Périquet, 1982. Cytotype polymorphism of the P-M system in two wild populations ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 79: 7801–7803.PubMedGoogle Scholar
  4. Anxolabéhère, D., D. Nouaud, G. Périquet & P. Tchen, 1985. P-element distribution in Eurasian populations ofDrosophila melanogaster: A genetic and molecular analysis. Proc. Natl. Acad. Sci. USA 82: 5418–5422.Google Scholar
  5. Bingham, P. M., M. G. Kidwell & G. M. Rubin, 1982. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29: 995–1004.PubMedGoogle Scholar
  6. Black, D.M., M. S. Jackson, M. G. Kidwell & G. A. Dover, 1987. KP elements repress P-induced hybrid dysgenesis inDrosophila melanogaster. EMBO J. 6: 4125–4135.PubMedGoogle Scholar
  7. Boussy, I. A., 1987. A latitudinal cline in P-M gonadal dysgenesis potential in AustralianDrosophila melanogaster populations. Genet. Res. 49: 11–18.PubMedGoogle Scholar
  8. Boussy, I. A., M. J. Healy, J. G. Oakeshott & M. G. Kidwell, 1988. Molecular analysis of the P-M gonadal dysgenesis cline in eastern AustralianDrosophila melanogaster. Genetics 119: 889–902.PubMedGoogle Scholar
  9. Boussy, I. A. & M. G. Kidwell, 1987. The P-M hybrid dysgenesis cline in eastern AustralianDrosophila melanogaster: discrete P, Q and M regions are nearly contiguous. Genetics 115: 737–745.PubMedGoogle Scholar
  10. Bregliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
  11. Charlesworth, B., 1991. Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet. Res. 57: 127–134.PubMedGoogle Scholar
  12. Engels, W. R., 1983. The P family of transposable elements inDrosophila. Ann. Rev. Genet. 17: 315–344.PubMedGoogle Scholar
  13. Engels, W. R., 1989. P elements inDrosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington.Google Scholar
  14. Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston & J. Sved, 1990. High-frequency P element loss inDrosophila is homolog dependent. Cell 62: 515–525.PubMedGoogle Scholar
  15. Engels, W. R. & C. R. Preston, 1980. Components of hybrid dysgenesis in a wild population ofDrosophila melanogaster. Genetics 95: 111–128.PubMedGoogle Scholar
  16. Hagiwara, N., E. Nakamura, E. T. Matsuura & S. I. Chigusa, 1987. Hybrid dysgenesis in natural populations ofDrosophila melanogaster in Japan. II. Strains which cannot induce P-M dysgenesis may completely suppress functional P element activity. Genet. Res. 50: 105–111.Google Scholar
  17. Karess, R. E. & G. M. Rubin, 1984. Analysis of P transposable element functions inDrosophila. Cell 38: 135–146.PubMedGoogle Scholar
  18. Kidwell, M. G., 1979. Hybrid dysgenesis inDrosophila melanogaster: the relationship between the P-M and I-R interaction systems. Genet. Res. 33: 205–217.Google Scholar
  19. Kidwell, M. G., 1983. Evolution of hybrid dysgenesis determinants inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 1655–1659.PubMedGoogle Scholar
  20. Kidwell, M. G., T. Frydryk & J. B. Novy, 1983. The hybrid dysgenesis potential ofDrosophila melanogaster strains of diverse temporal and geographical natural origins. Dros. Inf. Serv. 59: 63–69.Google Scholar
  21. Kidwell, M. G., J. F. Kidwell & J. A. Sved, 1977. Hybrid dysgenesis inDrosophila melanogaster: a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833.Google Scholar
  22. Murai, M. & S. I. Chigusa, 1985. On the hybrid dysgenesis potential of a Harwich X chromosome maintained in diverse genotype and cytotype condition. Jpn. J. Genet. 60: 616 (abstract in Japanese).Google Scholar
  23. Nitasaka, E., T. Mukai & T. Yamazaki, 1987. Repressor of P element inDrosophila melanogaster: Cytotype determination by a defective P element carrying only open reading frames 0 through 2. Proc. Natl. Acad. Sci. USA 84: 7605–7608.Google Scholar
  24. O'Hare, K. & G. M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome. Cell 34: 25–35.PubMedGoogle Scholar
  25. Ohishi, K., E. Takanashi & S. I. Chigusa, 1982. Hybrid dysgenesis in natural populations ofDrosophila melanogaster in Japan. I. Complete absence of the P factor in an island population. Jpn. J. Genet. 57: 423–428.Google Scholar
  26. Paik, Y. K., C. G. Lee, B. H. Cha & H. S. Yim, 1992. Prevalence of incomplete P elements in natural Q and M strains ofD. melanogaster in Korea. Dros. Inf. Serv. 71: 256–257.Google Scholar
  27. Rio, D. C., 1991. Regulation ofDrosophila P element transposition. Trends Genet. 7: 282–287.PubMedGoogle Scholar
  28. Ronsseray, S., M. Lehmann & G. Périquet, 1989. Comparison of the regulation of P elements in M and M' strains ofDrosophila melanogaster. Genet. Res. 54: 13–21.PubMedGoogle Scholar
  29. Sakoyama, Y., T. Todo, S. I. Chigusa, T. Honjo & S. Kondo, 1985. Structures of defective P transposable elements prevalent in natural Q and Q-derived M strain ofDrosophila melanogaster. Proc Natl. Acad. Sci. USA 82: 6236–6239.Google Scholar
  30. Schaefer, R. E., M. G. Kidwell & A. Fausto-Sterling, 1979. Hybrid dysgenesis inDrosophila melanogaster: morphological and cytological studies of ovarian dysgenesis. Genetics 92: 1141–1152.Google Scholar
  31. Takasu-Ishikawa, E., M. Yoshihara & Y. Hotta, 1992. Extra sequences found at P element excision sites inDrosophila melanogaster. Mol. Gen. Genet. 232: 17–23.PubMedGoogle Scholar
  32. Todo, T., Y. Sakoyama, S. I. Chigusa, A. Fukunaga, T. Honjo & S. Kondo, 1984. Polymorphism in distribution and structure of P elements in natural populations ofDrosophila melanogaster in and around Japan. Jpn. J. Genet. 59: 441–451.Google Scholar
  33. Yamamoto, A., F. Hihara & T. K. Watanabe, 1984. Hybrid dysgenesis inDrosophila melanogaster: predominance of Q factor in Japanese populations and its change in the laboratory. Genetica 63: 71–77.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • E. T. Matsuura
    • 1
  • S. Takada
    • 1
  • H. Kato
    • 1
  • S. Niizeki
    • 1
  • S. I. Chigusa
    • 1
  1. 1.Department of BiologyOchanomizu UniversityBunkyo-ku, TokyoJapan

Personalised recommendations