, Volume 90, Issue 2–3, pp 201–215 | Cite as

Micro-evolution in a wine cellar population: An historical perspective

  • Stephen W. McKechnie
  • Billy W. Geer


The population ofDrosophila melanogaster inside the wine cellar of Chateau Tahbilk of Victoria, Australia was found by McKenzie and Parsons (1974) to have undergone microevolution for greater alcohol tolerance when compared to the neighboring population outside the cellar. This triggered additional studies at Tahbilk, and at other wine cellars throughout the world. The contributions and interactions of researchers and the development of ideas on the ecology and genetics of this unique experimental system are traced. Although the ADH-F/ADH-S polymorphism was found to be maintained by selection in the Tahbilk populations, the selection is not significantly associated with alcohol tolerance. The environment inside the Tahbilk wine cellar is not as rich in ethanol as was originally anticipated, and selection that affects the alcohol dehydrogenase polymorphism may be more concerned with the relative efficiency with which ethanol is used as a nutrient byD. melanogaster. The synthesis and modification of lipids, particularly in membranes, appears to be important to alcohol tolerance. The studies of the Tahbilk population are at a crossroad. New experimental approaches promise to provide the keys to the selection that maintains the alcohol dehydrogenase polymorphism, and to factors that are important to alcohol tolerance and stress adaptation. From these research foundations at Tahbilk very significant contributions to our future understanding of the genetic processes of evolution can be made.

Key words

micro-evolution Drosophila alcohol tolerance alcohol dehydrogenase ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso-Moraga, A., A. Munoz-Serrano, J. M. Serradilla & J. R. David, 1988. Microspatial differentiation ofDrosophila melanogaster populations in and around a wine cellar in southern Spain. Genet. Sel. Evol. 30:307–314.Google Scholar
  2. Barker J. S. F., 1962. Sexual isolation betweenDrosophila melanogaster andD. simulans. Amer. Nat. 96: 105–115.Google Scholar
  3. Barker J. S. F., 1963. The estimation of relative fitness ofDrosophila populations. III. The fitness of certain strains ofDrosophila melanogaster. Evolution 17:138–146.Google Scholar
  4. Barker, J. S. F., 1967a. Factors affecting sexual isolation betweenDrosophila melanogaster andD. simulans. Amer. Nat. 101:277–287.Google Scholar
  5. Barker, J. S. F., 1967b. The estimation of relative fitness ofDrosophila populations. V. Generation interval and heterogeneity in competition. Evolution 21:299–309.Google Scholar
  6. Berger, E. M., 1971. A temporal survey of allelic variation in natural and laboratory populations ofDrosophila melanogaster. Genetics 67:121–136.PubMedGoogle Scholar
  7. Birley A. J. & C. S. Haley, 1987. The genetical response to natural selection by varied environments. IV. Gametic disequilibrium in spatially varied environments. Genetics 115: 295–303.Google Scholar
  8. Briscoe D. A., A. Robertson & J. M. Malpica, 1975. Dominance at theAdh locus in the response of adultDrosophila melanogaster to environmental alcohol. Nature 255:148–149.PubMedGoogle Scholar
  9. Chambers, G. K., 1988. TheDrosophila alcohol dehydrogenase gene-enzyme system. Adv. Genet. 25:40–107.Google Scholar
  10. Chambers G. K., 1991. Gene expression, adaptation and evolution in higher organisms. Evidence from studies ofDrosophila alcohol dehydrogenases. Comp. Biochem. Physiol. 99B:723–730.Google Scholar
  11. Clarke, B., 1975. The contribution of ecological genetics to evolutionary theory: detecting the direct affects of natural selection on particular polymorphic loci. Genetics 79 (suppl.):101–113.PubMedGoogle Scholar
  12. Cross, S. R. H. & A. J. Birley, 1986. Restriction endonuclease map variation in theAdh region in populations ofDrosophila melanogaster. Biochem. Genet. 24:415–433.PubMedGoogle Scholar
  13. David, J. R., 1988. Ethanol adaptation and alcohol dehydrogenase polymorphism inDrosophila: from phenotypic functions to genetic structures. pp. 163–172 in Population Genetics and Evolution, edited by G. de Jong. Springer-Verlag, Berlin.Google Scholar
  14. David, J. R., A. Alonso-Moraga, P. Capy, A. Munoz-Serrano & J. Vouidibio. 1989. Evolutionary biology of transient unstable populations. pp. 130–144 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin.Google Scholar
  15. David, J. & C. Bocquet, 1974. L'adaptation genetique a l'ethanol: un parametre important dans l'evolution des races geographiques deDrosophila melanogaster. C. R. Acad. Sci. Paris 279:1385–1388.Google Scholar
  16. David, J. R., H. Mercot, P. Capy, S. F. McEvey & J. van Herrewege, 1986. Alcohol tolerance andAdh gene frequencies in European and African populations ofDrosophila melanogaster. Génet. Sel. Evol. 18:405–416.Google Scholar
  17. David, J. R., J. Van Herrewege, M. Monlus & A. Prevosti, 1979. High ethanol tolerance in two distantly relatedDrosophila species: a probable case of recent convergent adaptation. Comp. Biochem. Physiol. 63C:53–56.Google Scholar
  18. Dobzhansky, Th., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.Google Scholar
  19. Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
  20. Geer, B. W., P. W. H. Heinstra, A. M. Kapoun & A. van der Zel, 1990. Alcohol dehydrogenase and alcohol tolerance inDrosophila melanogaster, pp. 231–252 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre. Plenum Press, New York.Google Scholar
  21. Geer, B. W., P. W. H. Heinstra & S. W. McKechnie, 1993. The biological basis of ethanol tolerance inDrosophila. Comp. Biochem. Physiol. 105B:203–229.Google Scholar
  22. Geer, B. W., S. W. McKechnie, P. W. H. Heinstra & M. J. Pyka, 1991a. Heritable variation in ethanol tolerance and its association with biochemical traits inDrosophila melanogaster. Evolution 45:1107–119.Google Scholar
  23. Geer, B. W., M. L. Langevin & S. W. McKechnie. 1985. Dietary ethanol and lipid synthesis inDrosophila melanogaster. Biochem. Genet. 23:607–622.PubMedGoogle Scholar
  24. Geer, B. W., R. R. Miller, Jr. & P. W. H. Heinstra, 1991b. Genetic and dietary control of alcohol degradation inDrosophila: role in cell damage. pp. 325–373 in Alcohol and Drug Abuse Review: Liver Pathology and Drugs of Abuse, edited by R. R. Watson. Humana Press, Totowa, New Jersey.Google Scholar
  25. Gibson, J. B., 1970. Enzyme flexibility inDrosophila melanogaster. Nature 227:959–960.PubMedGoogle Scholar
  26. Gibson, J. B., 1972. Differences in the number of molecules produced by two allelic electrophoretic enzyme variants inDrosophila melanogaster. Experientia 28:975–976.PubMedGoogle Scholar
  27. Gibson, J. B. & R. Miklovich, 1971. Modes of variation in alcohol dehydrogenase inDrosophila melanogaster. Experientia 27:99–100.PubMedGoogle Scholar
  28. Gibson, J. B., T. W. May & A. V. Wilks, 1981. Genetic variation at the alcohol dehydrogenase locus inDrosophila melanogaster in relation to environmental variations: Ethanol levels in breeding sites and allozyme frequencies. Oecologia 51:191–198.Google Scholar
  29. Grell, E. H., K. B. Jacobson & J. B. Murphy, 1965. Alcohol dehydrogenase inDrosophila melanogaster: isozymes and genetic variants. Science 149:80–82.Google Scholar
  30. Haley, C. S. & A. J. Birley, 1983. The genetical response to natural selection by varied environments. II. Observation on replicate populations in spatially varied environments. Heredity 51:581–606.PubMedGoogle Scholar
  31. Heinstra P. W. H., K. T. Eisses, W. G. E. J. Schoonen, W. Aben, A. J. DeWinter, D. J. Van Der Horst, W. J. A. Van Marrewijk, A. M. T. Beenakkers, W. Scharloo & G. E. W. Thorig, 1983. A dual function of alcohol dehydrogenase inDrosophila. Genetica 60:129–137.Google Scholar
  32. Heinstra, P. W. H., B. W. Geer, D. Seykens & M. L. Langevin, 1989. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC and acetaldehyde dehydrogenase (EC inDrosophila melanogaster larvae. Biochem. J. 259:791–797.PubMedGoogle Scholar
  33. Hickey, D. A. & M. D. McLean, 1980. Selection for ethanol tolerance andAdh allozymes in natural populations ofDrosophila melanogaster. Genet. Res. 36:11–15.PubMedGoogle Scholar
  34. Hoffmann, A. A. & S. W. McKechnie, 1991. Heritable variation in resource utilisation and resource response in a winery population ofDrosophila melanogaster. Evolution 45: 1000–1015.Google Scholar
  35. Hoffmann, A. A. & P. A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford Scientific Pubs. Oxford.Google Scholar
  36. Holmes, R. S., L. N. Moxon & P. A. Parsons, 1980. Genetic variability of alcohol dehydrogenase among AustralianDrosophila species: correlation of ADH biochemical phenotype with ethanol resource utilization. J. Exp. Zool. 214: 199–204.PubMedGoogle Scholar
  37. Hudson, R. R., M. Kreitman & M. Aguade, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159.PubMedGoogle Scholar
  38. Johnson, F. M. & C. Denniston, 1964. Genetic variation of alcohol dehydrogenase inDrosophila melanogaster. Nature 204:906–907.PubMedGoogle Scholar
  39. Johnson, F. M. & H. E. Shaffer, 1973. Isozyme variability in species of the genusDrosophila. VII. Genotype-environment relationships in populations ofDrosophila melanogaster from the eastern United States. Biochem. Genet. 10: 149–163.PubMedGoogle Scholar
  40. Knibb, W. R., J. G. Oakeshott & J. B. Gibson, 1982. Chromosome inversion polymorphism inDrosophila melanogaster. I. Latitudinal clines and associations between inversions in Australian populations. Genetics 98:833–847.Google Scholar
  41. Kojima, K. I. & Y. N. Tobari, 1969. The pattern of viability changes associated with genotype frequency at the alcohol dehydrogenase locus in a population ofDrosophila melanogaster. Genetics 61:201–209.PubMedGoogle Scholar
  42. Kreitman, M. & R. R. Hudson, 1991. Inferring the evolutionary histories of theAdh andAdh-dup loci inDrosophila melanogaster from patterns of polymorphism and divergence. Genetics 127:565–582.PubMedGoogle Scholar
  43. Laurie, C. C., J. T. Bridgham & M. Choudhary, 1991. Associations between DNA sequence variation and variation in expression of theAdh gene in natural populations ofDrosophila melanogaster. Genetics 129:489–499.PubMedGoogle Scholar
  44. Laurie, C. C., E. M. Heath, J. W. Jacobson & M. S. Thomson, 1990. Genetic basis of the difference in alcohol dehydrogenase expression betweenDrosophila melanogaster andDrosophila simulans. Proc. Natl. Acad. Sci. U.S.A. 87: 9674–9678.PubMedGoogle Scholar
  45. Laurie-Ahlberg, C. C., G. Maroni, G. C. Bewley, J. C. Lucchesi & B. S. Weir, 1980. Quantitative genetic variation of enzyme activities in natural populations ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 77:1073–1077.Google Scholar
  46. Lewontin, R. C. & J. L. Hubby, 1966. A molecular approach to the study of genic heterozygosity in natural populations ofDrosophila pseudoobscura. Genetics 54:595–609.PubMedGoogle Scholar
  47. Marks, R. W., J. G. Brittnacher, J. F. McDonald, T. Prout & F. J. Ayala, 1980. Wineries,Drosophila, alcohol and ADH. Oecologia 47:141–144.Google Scholar
  48. Maroni, G. & C. C. Laurie-Ahlberg, 1983. Genetic control ofAdh expression inDrosophila melanogaster. Genetics 105: 921–933.PubMedGoogle Scholar
  49. Matthew, P., A. Agrotis, A. C. Taylor & S. W. McKechnie, 1992. An association between ADH protein levels and polymorphic nucleotide variation in theAdh gene ofDrosophila melanogaster. Mol. Biol. Evol. 9:526–536.PubMedGoogle Scholar
  50. McDonald, J. F., S. M. Anderson & M. Santos, 1980. Biochemical differences between products of theAdh locus inDrosophila. Genetics 95:1013–1022.PubMedGoogle Scholar
  51. McKechnie, S. W. & B. W. Geer, 1986. sn-Glycerol-3-phosphate oxidase and alcohol tolerance inDrosophila melanogaster larvae. Biochem. Genet. 24:859–872.PubMedGoogle Scholar
  52. McKechnie, S. W. & B. W. Geer, 1993. Long-chain fatty acids affect the capacity ofDrosophila melanogaster to tolerate ethanol. J. Nutr. 123:106–116.PubMedGoogle Scholar
  53. McKechnie, S. W. & J. A. McKenzie, 1983. Polymorphism of alcohol dehydrogenase (ADH) in a winery cellar population ofDrosophila melanogaster: gene frequency association with temperature and genotypic differences in progeny production. Evolution 37:850–853.Google Scholar
  54. McKechnie, S. W. & P. Morgan, 1982. Alcohol dehydrogenase polymorphism ofDrosophila melanogaster: Aspects of alcohol and temperature variation in the larval environment. Aust. J. Biol. Sci. 35:85–93.Google Scholar
  55. McKechnie, S. W., J. L. Ross & K. L. Turney, 1990. Environmental modulation of alpha-glycerol-3-phospate oxidase (GPO) activity in larvae ofDrosophila melanogaster. pp 253–271 in Ecological and Evolutionary Genetics ofDrosophila, edited by Barker, J. S. F., W. T. Starmer and J. R. MacIntyre. Plenum Press, N. Y.Google Scholar
  56. McKenzie, J. A., 1975. Gene flow and selection in a natural population ofDrosophila melanogaster to alcohol in the environment. Genetics 77:385–394.Google Scholar
  57. McKenzie, J. A., 1980. An ecological study of the alcohol dehydrogenase (Adh) polymorphism ofDrosophila melanogaster. Aust. J. Zool 28:709–716.Google Scholar
  58. McKenzie, J. A. & S. W. McKechnie, 1978. Ethanol tolerance and theAdh polymorphism in a natural population ofDrosophila melanogaster. Nature 272:75–76.PubMedGoogle Scholar
  59. McKenzie, J. A. & S. W. McKechnie, 1979. A comparative study of resource utilization in natural populations ofDrosophila melanogaster andD. simulans. Oecologia 40:299–309.Google Scholar
  60. McKenzie, J. A. & S. W. McKechnie, 1981. The alcohol dehydrogenase polymorphism in a vineyard cellar population ofDrosophila melanogaster. pp. 201–215 in Genetic studies ofDrosophila populations. Proceedings of the Kioloa Conference, edited by J. B. Gibson and J. G. Oakeshott. Australian National University Press, Canberra.Google Scholar
  61. McKenzie, J. A. & P. A. Parsons, 1972. Alcohol tolerance: An ecological parameter in the relative success ofDrosophila melanogaster andDrosophila simulans. Oecologia 10:373–388.Google Scholar
  62. McKenzie, J. A. & P. A. Parsons, 1974. Microdifferentiation in a natural population ofDrosophila melanogaster to alcohol in the environment. Genetics 77:385–394.PubMedGoogle Scholar
  63. Monclus, M. & A. Prevosti, 1978–79. Cellars habitat andDrosophila populations. Genetica Iberica 30–31:189–201.Google Scholar
  64. Moxon, L. N., R. S. Holmes, P. A. Parsons, M. G. Irving & D. M. Doddrell, 1985. Purification and molecular properties of alcohol dehydrogenase fromDrosophila melanogaster: Evidence from NMR and kinetic studies for function as an aldehyde dehydrogenase. Comp. Biochem. Physiol. 80B: 525–535.Google Scholar
  65. Oakeshott, J. G., J. B. Gibson, P. R. Anderson, W. R. Knibb, D. G. Anderson & G. K. Chambers, 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines inDrosophila melanogaster. Evolution 36:86–96.Google Scholar
  66. Oakeshott, J. G., J. B. Gibson & S. R. Wilson, 1984. Selective effects of the genetic background and ethanol on the alcohol dehydrogenase polymorphism inDrosophila melanogaster. Heredity 53:51–67.PubMedGoogle Scholar
  67. Parsons, P. A., 1959. Genotypic-environmental interactions for various temperatures inDrosophila melanogaster. Genetics 44:1325–1333.Google Scholar
  68. Parsons, P. A., 1974. Genetics of resistance to environmental stress inDrosophila populations. Ann. Rev. Genetics 7: 239–265.Google Scholar
  69. Parsons, P. A., 1977. Isofemale strains and quantitative traits in natural populations ofDrosophila. Am. Nat. 111:613–621.Google Scholar
  70. Parsons, P. A., 1992. Evolutionary adaptation and stress: the fitness gradient. Evol. Biol. 26:191–223.Google Scholar
  71. Parsons, P. A. & J. A. McKenzie, 1972. The ecological genetics ofDrosophila. Evol. Biol. 5:87–132.Google Scholar
  72. Parsons, P. A. & S. M. Stanley, 1981. Comparative effects of environmental ethanol onDrosophila melanogaster andD. simulans adults including geographic differences inD. melanogaster. pp. 47–57 in Genetic studies of Drosophila populations, edited by J. B. Gibson and J. G. Oakeshott. Austr. Nat. Univ. Press, Canberra.Google Scholar
  73. Rasmuson, B., L. R. Nilson & M. Rasmuson, 1966. Effects of heterozygosity on alcohol dehydrogenase (ADH) activity inDrosophila melanogaster. Hereditas 56:313Google Scholar
  74. Ross, J. L. & S. W. McKechnie, 1991. Micro-spatial population differentiation in the activity of alpha-glycerol-3-phosphate oxidase (GPO) from mitochondria ofDrosophila melanogaster. Genetica 84:145–154.PubMedGoogle Scholar
  75. Schmitt, L. H., S. W. McKechnie & J. A. McKenzie, 1986. Associations between alcohol tolerance and the quantity of alcohol dehydrogenase inDrosophila melanogaster isolated from a winery population. Aust. J. Biol. Sci. 39:59–67.Google Scholar
  76. Sofer, W. & P. F. Martin, 1987. Analysis of alcohol dehydrogenase gene expression inDrosophila. Ann. Rev. Genet. 21: 203–235.PubMedGoogle Scholar
  77. Sofer, W. H. & H. Ursprung, 1968.Drosophila alcohol dehydrogenase. Purification and partial characterization. J. Biol. Chem. 243:3110–3115.PubMedGoogle Scholar
  78. Sturtevant, A. H., 1921. Genetic studies onDrosophila simulans. I. Introduction. Hybrids withDrosophila melanogaster. Genetics 5:488–500.Google Scholar
  79. Sturtevant, A. H. 1929. Contributions to the genetics ofDrosophila simulans andDrosophila melanogaster. I. The genetics ofDrosophila simulans. Publ. Carneg. Instn., No. 399: 1–62.Google Scholar
  80. Ursprung, H. & J. Leone, 1965. Alcohol dehydrogenases: a polymorphism inDrosophila melanogaster. J. Exp. Zool. 160:147–154.PubMedGoogle Scholar
  81. Van Delden, W., 1982. The alcohol dehydrogenase polymorphism inDrosophila melanogaster: Selection at an enzyme locus. Evol. Biol. 15:187–222.Google Scholar
  82. Vouidibio, J., P. Capy, D. Defaye, E. Pla, J. Sandrin, A. Cesink & J. R. David, 1989 Short-range genetic structure ofDrosophila melanogaster populations in an Afro-tropical urban area and its significance. Proc. Natl. Acad. Sci. USA 86: 8442–8446.PubMedGoogle Scholar
  83. Wallace, B., 1968. Topics in Population Genetics. W. W. Norton, Inc., New York.Google Scholar
  84. Wilkes, A. V., J. B. Gibson, J. G. Oakeshott & G. K. Chambers, 1980. An electrophoretically cryptic alcohol dehydrogenase variant inDrosophila melanogaster. II Post-electrophoresis heat treatment screening of natural populations. Aust. J. Bio. Sci. 33:575–585.Google Scholar
  85. Wilson, S. R., J. G. Oakeshott, J. B. Gibson & P. R. Anderson, 1982. Measuring selection coefficients affecting the alcohol dehydrogenase polymorphism inDrosophila melanogaster. Genetics 100:113–126.PubMedGoogle Scholar
  86. Wright, S., 1931. Evolution in Mendelian populations. Genetics 16:97–159.Google Scholar
  87. Zera, A. J., R. K. Koehn & J. G. Hall, 1984. Allozymes and biochemical adaptation. pp. 633–674 in Comprehensive Insect Physiology, Biochemistry and Pharmacology. edited by G. A. Kerkut and L. I. Gilbert. vol. 10. Pergamon Press, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Stephen W. McKechnie
    • 1
  • Billy W. Geer
    • 2
  1. 1.Department of Genetics and Developmental BiologyMonash UniversityClaytonAustralia
  2. 2.Department of BiologyKnox CollegeGalesburgUSA

Personalised recommendations