Inventiones mathematicae

, Volume 2, Issue 5, pp 332–376 | Cite as

Finite groups with abelian sylow 2-subgroups of order 8

  • John H. Walter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alperin, J., andD. Gorenstein: The multiplicators of certain simple groups. Proc. Am. Math. Soc.17, 515–519 (1966).Google Scholar
  2. [2]
    Artin, E.: The orders of the linear groups. Comm. Pure and Applied Math.8, 355–366 (1955).Google Scholar
  3. [3]
    Blackburn, H.: On a special class ofp-groups. Acta Math.100, 45–92 (1958).Google Scholar
  4. [4]
    Burnside, W.: Theory of Groups of Finite Order. Cambridge: University Press 1911.Google Scholar
  5. [5]
    Brauer, R.: Zur Darstellungstheorie der Gruppen endlichen Ordnung. Math. Z.63, 406–444 (1956).Google Scholar
  6. [6]
    —: Zur Darstellungstheorie der Gruppen endlichen Ordnung, II. Math. Z.72, 25–46 (1959).Google Scholar
  7. [7]
    —: Some applications of the theory of blocks of finite groups, I. J. Algebra1, 152–167 (1964).Google Scholar
  8. [8]
    —, andW. Fett: On the number of irreducible characters of finite groups in a given block. Proc. Natl. Acad. Sci.45, 361–365 (1959).Google Scholar
  9. [9]
    —, andC. Nesbitt: On the modular characters of groups. Ann. Math.42, 556–590 (1941).Google Scholar
  10. [10]
    Clifford, A.H.: Representations induced in an invariant subgroup. Ann. Math.38, 533–550 (1937).Google Scholar
  11. [11]
    Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory. Leipzig: B. G. Teubner 1901.Google Scholar
  12. [12]
    Feit, W., andJ.G. Thompson: Solvability of groups of odd oder. Pac. J. Math.13, 771–1029 (1963).Google Scholar
  13. [13]
    Gorenstein, D., andJ.H. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, I. J. Algebra2, 85–162 (1965).Google Scholar
  14. [14]
    Huppert, B.: Gruppen mit modularen Sylow-Gruppe. Math. Z.75, 140–163 (1961).Google Scholar
  15. [15]
    Janko, Z.: A new finite simple group with abelian 2-Sylow groups and its characterization. J. Algebra3, 147–187 (1966).Google Scholar
  16. [16]
    —, andJ.G. Thompson: On a class of finite simple groups of Ree. J. Algebra4, 274–293 (1966).Google Scholar
  17. [17]
    Nagell, T.: Introduction to number theory. New York: John Wiley & Sons 1951.Google Scholar
  18. [18]
    Ree, R.: A family of simple groups associated with the Lie algebra of typeG 2. Am. J. Math.83, 432–462 (1961).Google Scholar
  19. [19]
    Schur, I.: Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. reine angew. Math.127, 20–50 (1904).Google Scholar
  20. [20]
    —: Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. J. reine angew. Math.132, 85–137 (1907).Google Scholar
  21. [21]
    Suzuki, M.: Applications of group characters. Proc. Symp. Pure Math. Am. Math. Soc. 88–99 (1959).Google Scholar
  22. [22]
    —: Finite groups of even order in which Sylow 2-groups are independent. Ann. Math.80, 58–77 (1964).Google Scholar
  23. [23]
    Walter, J.H.: Character theory of finite groups with trivial intersection subsets. Nagoya Math. J.27, 515–525 (1966).Google Scholar
  24. [24]
    Walter, J.H.: The characterization of finite groups with abelian Sylow 2-subgroups (to appear).Google Scholar
  25. [25]
    Ward, H.N.: On Ree's series of simple groups. Trans. Am. Math. Soc.121, 62–89 (1966).Google Scholar
  26. [26]
    Wielandt, H.:p-Sylowgruppen undp-Faktogruppen. J. reine angew. Math.182, 180–193 (1940).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • John H. Walter
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations