Advertisement

Inventiones mathematicae

, Volume 2, Issue 5, pp 332–376 | Cite as

Finite groups with abelian sylow 2-subgroups of order 8

  • John H. Walter
Article

Keywords

Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alperin, J., andD. Gorenstein: The multiplicators of certain simple groups. Proc. Am. Math. Soc.17, 515–519 (1966).Google Scholar
  2. [2]
    Artin, E.: The orders of the linear groups. Comm. Pure and Applied Math.8, 355–366 (1955).Google Scholar
  3. [3]
    Blackburn, H.: On a special class ofp-groups. Acta Math.100, 45–92 (1958).Google Scholar
  4. [4]
    Burnside, W.: Theory of Groups of Finite Order. Cambridge: University Press 1911.Google Scholar
  5. [5]
    Brauer, R.: Zur Darstellungstheorie der Gruppen endlichen Ordnung. Math. Z.63, 406–444 (1956).Google Scholar
  6. [6]
    —: Zur Darstellungstheorie der Gruppen endlichen Ordnung, II. Math. Z.72, 25–46 (1959).Google Scholar
  7. [7]
    —: Some applications of the theory of blocks of finite groups, I. J. Algebra1, 152–167 (1964).Google Scholar
  8. [8]
    —, andW. Fett: On the number of irreducible characters of finite groups in a given block. Proc. Natl. Acad. Sci.45, 361–365 (1959).Google Scholar
  9. [9]
    —, andC. Nesbitt: On the modular characters of groups. Ann. Math.42, 556–590 (1941).Google Scholar
  10. [10]
    Clifford, A.H.: Representations induced in an invariant subgroup. Ann. Math.38, 533–550 (1937).Google Scholar
  11. [11]
    Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory. Leipzig: B. G. Teubner 1901.Google Scholar
  12. [12]
    Feit, W., andJ.G. Thompson: Solvability of groups of odd oder. Pac. J. Math.13, 771–1029 (1963).Google Scholar
  13. [13]
    Gorenstein, D., andJ.H. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, I. J. Algebra2, 85–162 (1965).Google Scholar
  14. [14]
    Huppert, B.: Gruppen mit modularen Sylow-Gruppe. Math. Z.75, 140–163 (1961).Google Scholar
  15. [15]
    Janko, Z.: A new finite simple group with abelian 2-Sylow groups and its characterization. J. Algebra3, 147–187 (1966).Google Scholar
  16. [16]
    —, andJ.G. Thompson: On a class of finite simple groups of Ree. J. Algebra4, 274–293 (1966).Google Scholar
  17. [17]
    Nagell, T.: Introduction to number theory. New York: John Wiley & Sons 1951.Google Scholar
  18. [18]
    Ree, R.: A family of simple groups associated with the Lie algebra of typeG 2. Am. J. Math.83, 432–462 (1961).Google Scholar
  19. [19]
    Schur, I.: Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. reine angew. Math.127, 20–50 (1904).Google Scholar
  20. [20]
    —: Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. J. reine angew. Math.132, 85–137 (1907).Google Scholar
  21. [21]
    Suzuki, M.: Applications of group characters. Proc. Symp. Pure Math. Am. Math. Soc. 88–99 (1959).Google Scholar
  22. [22]
    —: Finite groups of even order in which Sylow 2-groups are independent. Ann. Math.80, 58–77 (1964).Google Scholar
  23. [23]
    Walter, J.H.: Character theory of finite groups with trivial intersection subsets. Nagoya Math. J.27, 515–525 (1966).Google Scholar
  24. [24]
    Walter, J.H.: The characterization of finite groups with abelian Sylow 2-subgroups (to appear).Google Scholar
  25. [25]
    Ward, H.N.: On Ree's series of simple groups. Trans. Am. Math. Soc.121, 62–89 (1966).Google Scholar
  26. [26]
    Wielandt, H.:p-Sylowgruppen undp-Faktogruppen. J. reine angew. Math.182, 180–193 (1940).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • John H. Walter
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations