Mathematische Annalen

, Volume 201, Issue 4, pp 301–314 | Cite as

On some results of Atkin and Lehner

  • William Casselman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkin, A. O. L., Lehner, J.: Hecke operators on Λ0(m). Math. Ann.185, 134–160 (1970).Google Scholar
  2. 2.
    Baily, W., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442–528 (1966).Google Scholar
  3. 3.
    Casselman, W.: On abelian varieties with many endomorphisms and a conjecture of Shimura's, Inventiones math.12, 225–236 (1971).Google Scholar
  4. 4.
    Jacquet, H., Langlands, R. P.: Automorphic forms on GL(2). Berlin-Heidelberg-New York: Springer Lecture Notes, No.114, 1970.Google Scholar
  5. 5.
    Langlands, R. P.: Problems in the theory of automorphic forms, 18–86. In: Berlin-Heidelberg-New York: Springer Lecture Notes, No.170, 1970.Google Scholar
  6. 6.
    Miyake, T.: On automorphic forms onGL 2 and Hecke operators. Ann. of Math.94, 174–189 (1971).Google Scholar
  7. 7.
    Ogg, A.: Functional equations of modular forms. Math. Ann.183, 337–340 (1969).Google Scholar
  8. 8.
    Ogg, A.: On a convolution ofL-series. Inventiones math.7, 297–312 (1969).Google Scholar
  9. 9.
    Rankin, R.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II. Proc. Camb. Phil. Soc.35, 357–372 (1939).Google Scholar
  10. 10.
    Satake, I.: Theory of spherical functions on reductive algebraic groups overp-adic fields. Publications Mathematiques I.H.E.S. No. 18.Google Scholar
  11. 11.
    Weil, A.: Dirichlet series and automorphic forms. Berlin-Heidelberg-New York: Springer Lecture Notes. No.189, 1971.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • William Casselman
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouver 8Canada

Personalised recommendations