Static electric dipole polarizability of small sodium aggregates

  • I. Moullet
  • José Luís Martins
  • F. Reuse
  • J. Buttet
Electronic Structure And Properties


We present pseudopotential local-spin-density calculations of the static electric polarizability of sodium dimers and trimers and their respective cations. The electronic polarizabilities are obtained from self-consistent calculations in the presence of an external electric field, which is kept sufficiently small to avoid non-linear effects. The calculated polarizability tensor has a strong anisotropy directly related to the geometric and electronic structures of the molecules, the anisotropy being larger for the neutral clusters. The polarizabilities are averaged over the vibrational motion and rotations of the aggregates in order to be compared with the experimental measurements. The obtained values show an improvement in the agreement with experiment with respect to the values calculated in the spherical approximation.


31.20.Sy 31.90. +s 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.: Phys. Rev. B31, 2539 (1985)Google Scholar
  2. 2.
    Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W., Chou, M.Y., Cohen, M.L.: Phys. Rev. Lett.52, 2141 (1984)Google Scholar
  3. 3.
    de Heer, W.A., Knight, W.D., Chou, M.Y., Cohen, M.L.: Solid State Phys.40, 93 (1987)Google Scholar
  4. 4.
    Snider, D.R., Sorbello, R.S.: Phys. Rev. B28, 5702 (1983)Google Scholar
  5. 5.
    Beck, D.E.: Phys. Rev. B30, 6935 (1984)Google Scholar
  6. 6.
    Ekardt, W.: Phys. Rev. Lett.52, 1925 (1984)Google Scholar
  7. 7.
    Manninen, M., Nieminen, R.M., Puska, M.J.: Phys. Rev. B33, 4289 (1986)Google Scholar
  8. 8.
    Stampfli, P., Bennemann, K.H.: In: Physics and chemistry of small clusters. Jena, P., Rao, B.K., Khanna, S.N. (eds.), p. 473. New York: Plenum Press, 1987Google Scholar
  9. 9.
    Martins, J.L.: Calcul des propriétés structurales et électroniques d'agrégats de metaux alcalins. Ph.D. Thesis, Ecole Polytechnique fédérale de Lausanne (1984)Google Scholar
  10. 10.
    Martins, J.L., Buttet, J., Car, R.: Phys. Rev. B31, 1804 (1984)Google Scholar
  11. 11.
    Martins, J.L., Car, R., Buttet, J.: J. Chem. Phys.78, 5646 (1983)Google Scholar
  12. 12.
    Kohn, W., Vashishta, P.: In: Theory of the inhomogeneous electron gas. Lundqvist, S., March, N.H. (eds.), p. 79. New York: Plenum Press, 1983Google Scholar
  13. 13.
    Ceperley, D.M., Alder, B.J.: Phys. Rev. Lett.45, 566 (1980)Google Scholar
  14. 14.
    Bachelet, G.B., Hamann, D.R., Schlüter, M.: Phys. Rev. B26, 4199 (1982)Google Scholar
  15. 15.
    Puska, M.J., Nieminen, R.M., Manninen, M.: Phys. Rev. B31, 3486 (1985)Google Scholar
  16. 16.
    Bishop, D.M., Pouchan, C.: J. Chem. Phys.80, 789 (1984)Google Scholar
  17. 17.
    Bishop, D.M., Lam, B., Epstein, S.T.: J. Chem. Phys.88, 337 (1988)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • I. Moullet
    • 1
  • José Luís Martins
    • 2
  • F. Reuse
    • 1
  • J. Buttet
    • 1
  1. 1.Ecole Polytechnique Fédérale de LausanneInstitut de Physique ExpérimentaleLausanneSwitzerland
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations