Inventiones mathematicae

, Volume 28, Issue 3, pp 245–275 | Cite as

On ℓ-adic representations attached to modular forms

  • Kenneth A. Ribet


Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deligne, P.: Formes modulaires et représentationsb-adiques. Séminaire Bourbaki 355, Février 1969. Lecture Notes in Mathematics179. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  2. 2.
    Dickson, L. E.: Linear groups with an exposition of the Galois field theory. Leipzig: Teubner 1901Google Scholar
  3. 3.
    Dieudonné, J.: La géométrie des groupes classiques. Berlin-Heidelberg-Göttingen: Springer 1955Google Scholar
  4. 4.
    Hua, L-K.: Supplement to: On the automorphisms of the classical groups, by J. Dieudonné. AMS Memoirs No. 2. New York: AMS 1951Google Scholar
  5. 5.
    Katz, N.:p-adic properties of modular schemes and modular forms. International Summer School on Modular Functions; Antwerp, 1972. Lecture Notes in Mathematics350, 69–190, 1973Google Scholar
  6. 6.
    Ribet, K.: Galois action on division points of abelian varieties with many real multiplications. Harvard thesis, 1971. (To appear in revised form)Google Scholar
  7. 7.
    Serre, J-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968Google Scholar
  8. 8.
    Serre, J-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inventiones math.15, 259–331 (1972)Google Scholar
  9. 9.
    Serre, J-P.: Congruences et formes modulaires (d'après H.P.F. Swinnerton-Dyer). Séminaire Bourbaki 416, Juin 1972. Lecture Notes in Mathematics317, 319–338, 1973Google Scholar
  10. 10.
    Shih, K.: On the construction of Galois extensions of function fields and number fields. Princeton thesis, 1972Google Scholar
  11. 11.
    Swinnerton-Dyer, H.P.F.: Onl-adic representations and congruences for coefficients of modular forms. International Summer School on Modular Functions; Antwerp, 1972. Lecture Notes in Mathematics350, 1–55, 1973Google Scholar
  12. 12.
    Wilton, J.R.: Congruence properties of Ramanujan's function τ(n). Proc. London Math. Soc.31, 1–10 (1928)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Kenneth A. Ribet
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations