Keywords
Analytic Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Borel, A., and J.C. Moore: Homology theory for locally compact spaces. Mich. math. J.7, 137–159 (1960).Google Scholar
- 2.—, et A. Haefliger: La classe d'homologie fondamentale d'un espace analytique. Bull. Soc. math. France89, 461–513 (1961).Google Scholar
- 3.Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967.Google Scholar
- 4.Bungart, L.: Integration on real analytic varieties I. The volume element. Journal of Math. and Mechanics15, no. 6, 1039–1046 (1966).Google Scholar
- 5.—: Integration on real analytic varieties II. Stokes Formula. Journal of Math. and Mechanics15, no. 6, 1047–1054 (1966).Google Scholar
- 6.Giesecke, B.: Simpliziale Zerlegungen abzählbarer analytischer Räume. Math. Zeitsch.83, 177–213 (1964).Google Scholar
- 7.Grauert, H., u. H. Kerner: Deformationen von Singularitäten komplexer Räume. Math. Ann.153, 236–260 (1964).Google Scholar
- 8a.Grothendieck, A.: Sur les faisceaux algébriques et les faisceaux analytiques cohérents. Séminaire H. Cartan 1956–1957. Exposé no. 2. Secrétariat Mathématique Paris, 1958.Google Scholar
- 8.Grothendieck, A.: Elements de calcul infinitésimal. Séminaire H. Cartan 1960–1961, Exp. no. 14, Secrétariat mathématique. Paris 1959.Google Scholar
- 9.Grothendieck, A.: On the De Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S., 29.Google Scholar
- 10.Grothendieck, A.: On the De Rham cohomology of algebraic varieties. Notes by J. Coutes and Jussila. To appear in ten exposes on the cohomology of schemas, North Holland.Google Scholar
- 11.Herrera, M.: Integration on a semianalytique set. Bull. Soc. Math. France94, 141–180 (1966).Google Scholar
- 12.—: De Rham theorems on semianalytic sets. Bull. A.M.S.73, no. 3, 414–418 (1967).Google Scholar
- 13.Lojasiewicz, S.: Ensembles semianalytiques. Institut des Hautes Etudes Scientifiques, Paris: Presses Universitaries de France 1966.Google Scholar
- 14.—: Triangulation of semianalytic sets. Ann. Scuola norm. sup. Pisa. 3 serie,18, 449–474 (1964).Google Scholar
- 15.Norguet, F.: Dérivées partielles et résidus de formes différentielles. Séminaire P. Lelong 1958–1959, Exp. no. 10, Secrétariat mathématique, Paris 1959.Google Scholar
- 16.Reiffen, H.J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Zeitsch.101, 269–284 (1964).Google Scholar
- 17.Reiffen, H.J.: Kontrahierbare analytische Algebren. (To be published.)Google Scholar
- 18.Serre, J.P.: Géométrie algébrique et géométrie analytique. Annals de l'Institute Fourier6, 1–42 (1956).Google Scholar
- 19.Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Etudes, No. 5, 1960.Google Scholar
- 20.Hironaka, H.: The resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math.19, 109–326 (1964).Google Scholar
- 21.Kaup, L.: Eine topologische Eigenschaft Steinscher Räume. Nachr. der Akad. Wiss. in Göttingen Nr. 8, 1966.Google Scholar
- 22.Narasimhan, R.: On the homology groups of Stein spaces. Inventiones math.2, 377–385 (1967).Google Scholar
Copyright information
© Springer-Verlag 1969