Inventiones mathematicae

, Volume 7, Issue 4, pp 275–296

De Rham cohomology of an analytic space

  • Thomas Bloom
  • Miguel Herrera
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., and J.C. Moore: Homology theory for locally compact spaces. Mich. math. J.7, 137–159 (1960).Google Scholar
  2. 2.
    —, et A. Haefliger: La classe d'homologie fondamentale d'un espace analytique. Bull. Soc. math. France89, 461–513 (1961).Google Scholar
  3. 3.
    Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967.Google Scholar
  4. 4.
    Bungart, L.: Integration on real analytic varieties I. The volume element. Journal of Math. and Mechanics15, no. 6, 1039–1046 (1966).Google Scholar
  5. 5.
    —: Integration on real analytic varieties II. Stokes Formula. Journal of Math. and Mechanics15, no. 6, 1047–1054 (1966).Google Scholar
  6. 6.
    Giesecke, B.: Simpliziale Zerlegungen abzählbarer analytischer Räume. Math. Zeitsch.83, 177–213 (1964).Google Scholar
  7. 7.
    Grauert, H., u. H. Kerner: Deformationen von Singularitäten komplexer Räume. Math. Ann.153, 236–260 (1964).Google Scholar
  8. 8a.
    Grothendieck, A.: Sur les faisceaux algébriques et les faisceaux analytiques cohérents. Séminaire H. Cartan 1956–1957. Exposé no. 2. Secrétariat Mathématique Paris, 1958.Google Scholar
  9. 8.
    Grothendieck, A.: Elements de calcul infinitésimal. Séminaire H. Cartan 1960–1961, Exp. no. 14, Secrétariat mathématique. Paris 1959.Google Scholar
  10. 9.
    Grothendieck, A.: On the De Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S., 29.Google Scholar
  11. 10.
    Grothendieck, A.: On the De Rham cohomology of algebraic varieties. Notes by J. Coutes and Jussila. To appear in ten exposes on the cohomology of schemas, North Holland.Google Scholar
  12. 11.
    Herrera, M.: Integration on a semianalytique set. Bull. Soc. Math. France94, 141–180 (1966).Google Scholar
  13. 12.
    —: De Rham theorems on semianalytic sets. Bull. A.M.S.73, no. 3, 414–418 (1967).Google Scholar
  14. 13.
    Lojasiewicz, S.: Ensembles semianalytiques. Institut des Hautes Etudes Scientifiques, Paris: Presses Universitaries de France 1966.Google Scholar
  15. 14.
    —: Triangulation of semianalytic sets. Ann. Scuola norm. sup. Pisa. 3 serie,18, 449–474 (1964).Google Scholar
  16. 15.
    Norguet, F.: Dérivées partielles et résidus de formes différentielles. Séminaire P. Lelong 1958–1959, Exp. no. 10, Secrétariat mathématique, Paris 1959.Google Scholar
  17. 16.
    Reiffen, H.J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Zeitsch.101, 269–284 (1964).Google Scholar
  18. 17.
    Reiffen, H.J.: Kontrahierbare analytische Algebren. (To be published.)Google Scholar
  19. 18.
    Serre, J.P.: Géométrie algébrique et géométrie analytique. Annals de l'Institute Fourier6, 1–42 (1956).Google Scholar
  20. 19.
    Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Etudes, No. 5, 1960.Google Scholar
  21. 20.
    Hironaka, H.: The resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math.19, 109–326 (1964).Google Scholar
  22. 21.
    Kaup, L.: Eine topologische Eigenschaft Steinscher Räume. Nachr. der Akad. Wiss. in Göttingen Nr. 8, 1966.Google Scholar
  23. 22.
    Narasimhan, R.: On the homology groups of Stein spaces. Inventiones math.2, 377–385 (1967).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Thomas Bloom
    • 2
  • Miguel Herrera
    • 1
  1. 1.University of WashingtonSeattleUSA
  2. 2.Institut Henri PoincaréParis(5e)France

Personalised recommendations