Advertisement

Inventiones mathematicae

, Volume 2, Issue 3, pp 171–177 | Cite as

Submersions and immersions of manifolds

  • Ioan James
  • Emery Thomas
Article

Keywords

Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barcus, W. D.: Note on cross-sections overCW-complexes. Quart. J. Math. Oxford (2), 50–160 (1954).Google Scholar
  2. [2]
    Hirsch, M.: Immersions of manifolds. Trans. Amer. Math. Soc.53, 242–276 (1959).Google Scholar
  3. [3]
    James, I. M.: A relation between Postnikov classes. Quart. J. Math. Oxford (2), 269–280 (1966).Google Scholar
  4. [4]
    James, I. M., andE. Thomas: Note on the classification of cross-sections. Topology4, 351–359 (1965).Google Scholar
  5. [5]
    ——: On the enumeration of cross-sections. Topology5, 95–114 (1966).Google Scholar
  6. [6]
    Massey, W.: Normal vector fields on manifolds. Proc. A.M.S.12, 33–40 (1961).Google Scholar
  7. [7]
    —: On the Stiefel-Whitney classes of a manifold, Amer. J. Math.82, 92–102 (1960).Google Scholar
  8. [8]
    —: On the Stiefel-Whitney classes of a manifold. II. Proc. A.M.S.13, 938–942 (1962).Google Scholar
  9. [9]
    Phillips, A.: Submersions of open manifolds. Thesis. Princeton University 1966.Google Scholar
  10. [10]
    Spanier, E.: Algebraic Topology. New York: McGraw-Hill 1966.Google Scholar
  11. [11]
    Steenrod, N.: The topology of fiber bundles. Princeton University Press 1957.Google Scholar
  12. [12]
    Wu, W. T.: Classes charactéristiques eti-carrés d'une variété. C.R. Acad. Sci. (Paris)230, 918–920 (1950).Google Scholar
  13. [13]
    —: On the immersion ofC -3-manifolds in a Euclidean space. Sci. Sinica13, 335–336 (1964).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Ioan James
    • 1
    • 2
  • Emery Thomas
    • 1
    • 2
  1. 1.Oxford University Mathematical InstituteOxfordUK
  2. 2.University of California at BerkeleyBerkeleyUSA

Personalised recommendations