Inventiones mathematicae

, Volume 9, Issue 4, pp 318–344 | Cite as

AlgebraicK-theory and quadratic forms

  • John Milnor
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, E.: Algebraic numbers and algebraic functions. New York: Gordon and Breach 1967.Google Scholar
  2. 2.
    Bass, H.:K 2 and symbols, pp. 1–11 of AlgebraicK-theory and its geometric applications. Lecture Notes in Mathematics, Vol.108. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  3. 3.
    Bass, H.: Tate, J.:K 2 of global fields (in preparation).Google Scholar
  4. 4.
    Birch, B. J.:K 2 of global fields (mimeographed proceedings of conference, S.U.N.Y. Stony Brook 1969).Google Scholar
  5. 5.
    Delzant, A.: Definition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2. C. R. Acad. Sci. Paris255, 1366–1368 (1962).Google Scholar
  6. 6.
    Kaplansky, I., Shaker, R. J.: Abstract quadratic forms. Canad. J. Math.21, 1218–1233 (1969).Google Scholar
  7. 7.
    Kervaire, M.: Multiplicateurs de Schur etK-théorie (to appear in de Rham Festschrift).Google Scholar
  8. 8.
    Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples deployés. Ann. Sci. Ec. Norm Sup. 4e série2, 1–62 (1969).Google Scholar
  9. 9.
    Milnor, J.: Notes on algebraicK-theory (to appear).Google Scholar
  10. 10.
    Moore, C.: Group extensions ofp-adic and adelic linear groups. Publ. Math. I.H.E.S.35, 5–74 (1969).Google Scholar
  11. 11.
    Nobile, A., Villamayor, O.: Sur laK-théorie algébrique. Ann. Sci. Ec. Norm. Sup. 4e série1, 581–616 (1968).Google Scholar
  12. 12.
    O'Meara, O. T.: Introduction to quadratic forms. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  13. 13.
    Pfister, A.: Quadratische Formen in beliebigen Körpern. Inventiones math.1, 116–132 (1966).Google Scholar
  14. 14.
    Scharlau, W.: Quadratische Formen und Galois-Cohomologie. Inventiones math.4, 238–264 (1967).Google Scholar
  15. 15.
    Serre, J. P.: Cohomologie Galoisienne. Lecture Notes in Mathematics, Vol.5. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  16. 16.
    Springer, T. A.: Quadratic forms over a field with a discrete valuation. Indag. Math.17, 352–362 (1955).Google Scholar
  17. 17.
    Swan, R.: AlgebraicK-theory. Lecture Notes in Mathematics, Vol.76. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  18. 18.
    Swan, R.: Non-abelian homological algebra andK-theory, (mimeographed) Univ. of Chicago, 1968.Google Scholar
  19. 19.
    Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Int. Congr. Math. Stockholm, 288–295 (1963).Google Scholar
  20. 20.
    Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1967.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • John Milnor
    • 1
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridge(USA)

Personalised recommendations