Advertisement

Inventiones mathematicae

, Volume 9, Issue 4, pp 318–344 | Cite as

AlgebraicK-theory and quadratic forms

  • John Milnor
Article

Keywords

Quadratic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, E.: Algebraic numbers and algebraic functions. New York: Gordon and Breach 1967.Google Scholar
  2. 2.
    Bass, H.:K 2 and symbols, pp. 1–11 of AlgebraicK-theory and its geometric applications. Lecture Notes in Mathematics, Vol.108. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  3. 3.
    Bass, H.: Tate, J.:K 2 of global fields (in preparation).Google Scholar
  4. 4.
    Birch, B. J.:K 2 of global fields (mimeographed proceedings of conference, S.U.N.Y. Stony Brook 1969).Google Scholar
  5. 5.
    Delzant, A.: Definition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2. C. R. Acad. Sci. Paris255, 1366–1368 (1962).Google Scholar
  6. 6.
    Kaplansky, I., Shaker, R. J.: Abstract quadratic forms. Canad. J. Math.21, 1218–1233 (1969).Google Scholar
  7. 7.
    Kervaire, M.: Multiplicateurs de Schur etK-théorie (to appear in de Rham Festschrift).Google Scholar
  8. 8.
    Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples deployés. Ann. Sci. Ec. Norm Sup. 4e série2, 1–62 (1969).Google Scholar
  9. 9.
    Milnor, J.: Notes on algebraicK-theory (to appear).Google Scholar
  10. 10.
    Moore, C.: Group extensions ofp-adic and adelic linear groups. Publ. Math. I.H.E.S.35, 5–74 (1969).Google Scholar
  11. 11.
    Nobile, A., Villamayor, O.: Sur laK-théorie algébrique. Ann. Sci. Ec. Norm. Sup. 4e série1, 581–616 (1968).Google Scholar
  12. 12.
    O'Meara, O. T.: Introduction to quadratic forms. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  13. 13.
    Pfister, A.: Quadratische Formen in beliebigen Körpern. Inventiones math.1, 116–132 (1966).Google Scholar
  14. 14.
    Scharlau, W.: Quadratische Formen und Galois-Cohomologie. Inventiones math.4, 238–264 (1967).Google Scholar
  15. 15.
    Serre, J. P.: Cohomologie Galoisienne. Lecture Notes in Mathematics, Vol.5. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  16. 16.
    Springer, T. A.: Quadratic forms over a field with a discrete valuation. Indag. Math.17, 352–362 (1955).Google Scholar
  17. 17.
    Swan, R.: AlgebraicK-theory. Lecture Notes in Mathematics, Vol.76. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  18. 18.
    Swan, R.: Non-abelian homological algebra andK-theory, (mimeographed) Univ. of Chicago, 1968.Google Scholar
  19. 19.
    Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Int. Congr. Math. Stockholm, 288–295 (1963).Google Scholar
  20. 20.
    Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1967.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • John Milnor
    • 1
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridge(USA)

Personalised recommendations