Inventiones mathematicae

, Volume 19, Issue 4, pp 279–330 | Cite as

On the heat equation and the index theorem

  • M. Atiyah
  • R. Bott
  • V. K. Patodi
Article

Keywords

Heat Equation Index Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators, I. Ann. of Math.87, 484–530 (1968).Google Scholar
  2. 2.
    Atiyah, M.F., Singer, I.M.; The index of elliptic operators, III. Ann. of Math.87, 546–604 (1968).Google Scholar
  3. 3.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators, IV. Ann. of Math.93, 119–138 (1971).Google Scholar
  4. 4.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators, V. Ann. of Math.93, 139–149 (1971).Google Scholar
  5. 5.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc.69, 422–433 (1963).Google Scholar
  6. 6.
    Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes, I. Ann. of Math.86, 374–407 (1967).Google Scholar
  7. 7.
    Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes, II. Ann. of Math.88, 451–491 (1968).Google Scholar
  8. 8.
    Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology3, Suppl. 1, 3–38 (1964).CrossRefGoogle Scholar
  9. 9.
    Atiyah, M.F., Hirzebruch, F.: Spin-manifolds and group actions. Essays on Topology and related topics dedicated to G. de Rham. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  10. 10.
    Berger, M.: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics194. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  11. 11.
    Bott, R.: Vector fields and characteristic numbers. Mich. Math. J.14, 231–244 (1967).CrossRefGoogle Scholar
  12. 12.
    Bott, R.: The periodicity theorem for the classical groups and some of its applications. Advances in Math.4, 353–411 (1970).CrossRefGoogle Scholar
  13. 13.
    Eisenhart, L.: Introduction to Differential Geometry. Princeton: University Press 1940.Google Scholar
  14. 14.
    Gel'fand, I.M.: The cohomology of some infinite-dimensional Lie algebras. Proceedings of International Congress, Nice,I, 95–110 (1970).Google Scholar
  15. 15.
    Gilkey, P.: Curvature and the eigenvalues of the Laplacian for elliptic complexes. Advances in Mathematics (to appear).Google Scholar
  16. 16.
    Hirzebruch, F.: Topological methods in algebraic geometry. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  17. 17.
    Hitchin, N.: Harmonic Spinors (to appear).Google Scholar
  18. 18.
    McKean, H. P., Jr., Singer, I. M.: Curvature and the eigenvalues of the Laplacian. J. Differential Geometry1, 43–69 (1967).Google Scholar
  19. 19.
    Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian J. Math.1, 242–256 (1949).Google Scholar
  20. 20.
    Palais, R.: Seminar on the Atiyah-Singer Index Theorem. Ann. of Math. Studies57, Princeton, 1965.Google Scholar
  21. 21.
    Patodi, V.K.: Curvature and the eigenforms of the Laplace operator. J. Diff. Geometry5, 233–249 (1971).Google Scholar
  22. 22.
    Patodi, V.K.: An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Diff. Geometry5, 251–283 (1971).Google Scholar
  23. 23.
    Seeley, R.T.: Complex powers of an elliptic operator. Proc. Sympos. Pure Math.10, Amer. Math. Soc. 288–307, 1967.Google Scholar
  24. 24.
    Weyl, H.: The classical groups, Princeton University Press, Princeton, 1946.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • M. Atiyah
    • 1
  • R. Bott
    • 2
  • V. K. Patodi
    • 3
    • 4
  1. 1.Mathematical InstituteOxfordEngland
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Institute for Advanced StudyPrincetonUSA
  4. 4.School of MathematicsTata Institute of Fundamental ResearchBombay 5India

Personalised recommendations