Advertisement

Mathematische Annalen

, Volume 243, Issue 3, pp 213–216 | Cite as

Ein planarer hypohamiltonscher Graph mit 57 Knoten

  • Wolfgang Hatzel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Grünbaum, B.: Vertices missed by longest paths or circuits. J. Combinatorial Theory Ser. A17, 31–38 (1974)Google Scholar
  2. 2.
    Sachs, H.: Ein von Kozyrev und Grin erg angegebener nicht-hamiltonscher kubischer planarer Graph. In: Beiträge zur Graphentheorie, pp. 127–130. Leipzig: Teubner 1968Google Scholar
  3. 3.
    Thomassen, C.: Planar and infinite hypohamiltonian and hypotraceable graphs. Discrete Math.14, 377–389 (1976)Google Scholar
  4. 4.
    Tutte, W.T.: Non-hamiltonian planar maps. In: Graph theory and computing, pp. 295–301. Read, R.C., ed.. New York: Academic Press 1972Google Scholar
  5. 5.
    Zamfirescu, T.: A two-connected planar graph without concurrent longest paths. J. Combinatorial Theory Ser. B13, 116–121 (1972)Google Scholar
  6. 6.
    Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand.38, 211–239 (1976)Google Scholar
  7. 7.
    Zamfirescu, T.: L'histoire et l'état présent des bornes connues pourP kj, Ckj, Pkj, etC kj. Cahiers Centre Études Recherche Opér.17, 427–439 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wolfgang Hatzel
    • 1
  1. 1.Castrop-RauxelBundesrepublik Deutschland

Personalised recommendations