Advertisement

Mathematische Annalen

, Volume 232, Issue 2, pp 115–120 | Cite as

A note on Hölder's theorem concerning the gamma function

  • Steven B. Bank
  • Robert P. Kaufman
Article

Keywords

Gamma Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, S., Kaufman, R.: An extension of Hölder's theorem concerning the Gamma function. Funkcialaj Ekvacioj19, 53–63 (1976)Google Scholar
  2. 2.
    Bourbaki, N.: Algèbre, Chapt. IV-V. Éléments de Mathématique, Livre II. Paris: Hermann 1950Google Scholar
  3. 3.
    Hausdorff, F.: Zum Hölderschen Satz über Γ(z). Math. Ann.94, 244–247 (1925)Google Scholar
  4. 4.
    Hölder, O.: Über die Eigenschaft der Γ-Funktion, keiner algebraischen Differentialgleichung zu genügen. Math. Ann.28, 1–13 (1887)Google Scholar
  5. 5.
    Levin, B.: A generalization of the theorem of Hölder on the hypertranscendence of Γ(x). Rostov.-na-Donu Gos. Univ. Ucen. Zap.1, 79–98 (1934) (Russian)Google Scholar
  6. 6.
    Moore, E.: Concerning transcendentally transcendental functions. Math. Ann.48, 49–74 (1897)Google Scholar
  7. 7.
    Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris: Gauthier-Villars 1929Google Scholar
  8. 8.
    Ostrowski, A.: Neuer Bewwis des Hölderschen Satzes, daß die Γ-Funktion keiner algebraischen Differentialgleichung genügt. Math. Ann.79, 286–288 (1919)Google Scholar
  9. 9.
    Ostrowski, A.: Zum Hölderschen Satz über Γ(x). Math. Ann.94, 248–251 (1925)Google Scholar

Copyright information

© Spring-Verlag 1978

Authors and Affiliations

  • Steven B. Bank
    • 1
  • Robert P. Kaufman
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations