Zeitschrift für Physik B Condensed Matter

, Volume 25, Issue 3, pp 297–307 | Cite as

Experimental and numerical study of self-induced transparency in a neon absorber

  • W. Krieger
  • G. Gaida
  • P. E. Toschek


Self-induced transparency on the neon transition 2s2(J=1)−2p4(J=2) is studied both experimentally by investigating the propagation of 3-nsec laser pulses at 1.15 µm in an absorber discharge and theoretically by a numerical integration of Bloch's equations and the wave equation.—The application of linearly and circularly polarized light corresponds to the interaction with a quasi-nondegenerate and degenerate transition, respectively. Pulse shapes, delays, and transmittancevs. input peak intensity are found in quantitative agreement with the calculated data. While with linear light polarization all SIT characteristics clearly appear, with circular polarization the pulse break-up and the oscillation of transmittance due to optical nutations are washed out.—The homogeneous linewidth derived from pulse delay data agrees with the value from conventional measurements. The results prove SIT useful as a quantitative spectroscopic method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieger, W., Toschek, P.E.: Phys. Rev. A11, 276 (1975)Google Scholar
  2. 2.
    McCall, S.L., Hahn, E.L.: Phys. Rev. Letters18, 908 (1967) McCall, S.L., Hahn, E.L.: Phys. Rev.183, 457 (1969)Google Scholar
  3. 3.
    McCall, S.L., Hahn, E.L.: Phys. Rev. A2, 861 (1970)Google Scholar
  4. 4.
    Hopf, F.A., Scully, M.O.: Phys. Rev.179, 399 (1969)Google Scholar
  5. 5.
    Courtens, E.: Proc. 1969 Chania Conference Vol. 6: Short Laser Pulses and Coherent Interaction, New York: Gordon and Breach Inc.Google Scholar
  6. 6.
    Icsevgi, A., Lamb, W.E. Jr.: Phys. Rev.185, 517 (1969)Google Scholar
  7. 7.
    Hopf, F.A., Scully, M.O.: Phys. Rev. B1, 50 (1970)Google Scholar
  8. 8.
    Lamb, G.L. Jr.: Rev. Mod. Phys.43, 99 (1971)Google Scholar
  9. 9.
    Bullough, R.K., Ahmad, F.: Phys. Rev. Letters27, 330 (1971)Google Scholar
  10. 10.
    Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: Proc. IEEE61, 1443 (1973)Google Scholar
  11. 11.
    Caudrey, P.J., Gibbon, J.D., Eilbeck, J.C., Bullough, R.K.: Phys. Rev. Letters30, 237 (1973) Bullough, R.K., Caudrey, P.J., Eilbeck, J.C., Gibbon, J.D.: Opto-Electronics6, 121 (1974)Google Scholar
  12. 12.
    e.g. Patel, C.K.N., Slusher, R.E.: Phys. Rev. Letters19, 1019 (1967) Patel, C.K.N.: Phys. Rev. A1, 979 (1970) Rhodes, C.K., Szöke, A.: Phys. Rev.184, 25 (1969) Cheo, P.K., Wang, C.H.: Phys. Rev. Lett. A1, 225 (1970) Hocker, G.B., Tang, C.L.: Phys. Rev. Lett.21, 591 (1968); Phys. Rev.184, 356 (1969)Google Scholar
  13. 13.
    Gibbs, H.M., Slusher, R.E.: Phys. Rev. Letters24, 638 (1970)Google Scholar
  14. 14.
    Slusher, R.E., Gibbs, H.M.: Phys. Rev. A5, 1634 (1972)Google Scholar
  15. 15.
    Gibbs, H.M., Slusher, R.E.: Phys. Rev. A6, 2326 (1972)Google Scholar
  16. 16.
    Rhodes, C.K., Szöke, A., Javan, A.: Phys. Rev. Letters21, 1151 (1968)Google Scholar
  17. 17.
    Salamo, G.J., Gibbs, H.M., Churchill, G.G.: Phys. Rev. Letters33, 273 (1974)Google Scholar
  18. 18.
    Keil, R., Schabert, A., Toschek, P.: Z. Physik261, 71 (1973)Google Scholar
  19. 19.
    See, e.g. Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms, New York: John Wiley & Sons 1975Google Scholar
  20. 20.
    Bloch, F., Siegert, A.: Phys. Rev.57, 522 (1940)Google Scholar
  21. 21.
    Feynman, R.P., Vernon, F.L. Jr., Hellwarth, R.W.: J. Appl. Phys.28, 49 (1957)Google Scholar
  22. 22.
    Hopf, F.A., Rhodes, C.K., Szöke, A.: Phys. Rev. B1, 2833 (1970)Google Scholar
  23. 23.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, New York N.Y.: Dover Publications Inc. 1970Google Scholar
  24. 24.
    Moore, C.E.: Atomic Energy Levels, National Bureau of Standards, Washington, 1949Google Scholar
  25. 25.
    Decomps, B.: These de Doctorat, Université de Paris, 1969Google Scholar
  26. 26.
    Bennett, W.R. Jr., Kindlmann, P.J.: Phys. Rev.149, 38 (1966)Google Scholar
  27. 27.
    Lawrence, G.M., Liszt, H.S.: Phys. Rev.178, 178 (1969)Google Scholar
  28. 28.
    Ducloy, M.: Private communicationGoogle Scholar
  29. 29.
    Faust, W.L., McFarlane, R.A.: J. Appl. Phys.35, 2010 (1964) Decomps, B., Dumont, M.: IEEE J. Quantum ElectronicsQE-4, 916 (1968)Google Scholar
  30. 30.
    Beterov, I.M., Matyugin, Yu.A., Chebotayev, V.P.: Zh. Opt. Spectrosc.28, 357 (1970)Google Scholar
  31. 31.
    This was shown for the quite similar transition with the upper state 3s 2 by B. Decomps and M. Dumont, Comptes Rendus266, 1272 (1968)Google Scholar
  32. 32.
    Schneider, F., Toschek, P.E.: Laser Report 4-74, Institut für Angewandte Physik, Universität Heidelberg, 1974Google Scholar
  33. 33.
    Clunie, I.M., Rock, N.H.: Phys. Letters13, 213 (1964)Google Scholar
  34. 34.
    Lee, P.H., Schoefer, P.B., Barker, W.B.: Appl. Phys. Letters13, 373 (1968)Google Scholar
  35. 35.
    Geller, M., Altmann, D.E., De Temple, T.A.: J. Appl. Phys.37, 3639 (1966)Google Scholar
  36. 36.
    Feld, M.S., Javan, A., Lee, P.H.: Appl. Phys. Letters13, 424 (1968)Google Scholar
  37. 37.
    Bennett, W.R. Jr.: Appl. Opt. Suppl.2, 3 (1965)Google Scholar
  38. 38.
    Bölger, B., Gibbs, H.M., Mattar, F.P., Newstein, M.C., Forster, G., Toschek, P.E.: To be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Krieger
    • 1
  • G. Gaida
    • 1
  • P. E. Toschek
    • 1
  1. 1.Institut für Angewandte Physik IUniversität HeidelbergHeidelberg 1Federal Republic of Germany

Personalised recommendations