Mathematische Annalen

, Volume 248, Issue 3, pp 249–266 | Cite as

Modular forms of half-integral weight on Γ0(4)

  • Winfried Kohnen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkin, A.O.L., Lehner, J.: Hecke operators on Γ0(m). Math. Ann.185, 134–160 (1970)Google Scholar
  2. 2.
    Cohen, H.: Sommes des carrês, fonctions L et formes modulaires. C.R. Acad. Sci. Paris277, 827–830 (1973)Google Scholar
  3. 3.
    Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann.217, 171–185 (1975)Google Scholar
  4. 4.
    Cohen, H.: Formes modulaires à une et deux variables. Thèse pour l'obtention du grade de docteur d'état ès sciences. Bordeaux 1976Google Scholar
  5. 5.
    Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables, modular functions of one variable. VI. In: Lecture Notes in Mathematics No. 627, pp. 174–196. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  6. 6.
    Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Invent. Math.9, 1–14 (1969)Google Scholar
  7. 7.
    Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck u. Ruprecht 1970Google Scholar
  8. 8.
    Lang, S.: Introduction to modular forms. In: Grundlehren der Mathematischen Wissenschaften Vol. 222. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  9. 9.
    Niwa, S.: Modular forms of half-integral weight and the integral of certain theta-functions. Nagoya Math. J.56, 147–161 (1974)Google Scholar
  10. 10.
    Niwa, S.: On Shimura's trace formula. Nagoya Math. J.66, 183–202 (1977)Google Scholar
  11. 11.
    Shimura, G.: On modular forms of half-integral weight. Ann. of Math.97, 440–481 (1973)Google Scholar
  12. 12.
    Shintani, T.: On construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J.58, 83–126 (1975)Google Scholar
  13. 13.
    Swinnerton-Dyer, H.P.F.: Onl-adic representations and congruences for coefficients of modular forms, modular functions of one variable. III. In: Lecture Notes in Mathematics No. 350, pp. 1–55. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  14. 14.
    Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)Google Scholar
  15. 15.
    Zagier, D.: On the values at negative integers of the zeta function of real quadratic fields. Enseignement Math. Ser. II.22, 55–95 (1976)Google Scholar
  16. 16.
    Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, modular functions of one variable. VI. In: Lecture Notes in Mathematics No. 627, pp. 105–169. Berlin, Heidelberg, New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Winfried Kohnen
    • 1
  1. 1.Mathematisches Institut der UniversitätBonnGermany

Personalised recommendations