Advertisement

Mathematische Annalen

, Volume 248, Issue 3, pp 205–239 | Cite as

Moduli of vector bundles on curves with parabolic structures

  • V. B. Mehta
  • C. S. Seshadri
Article

Keywords

Vector Bundle Parabolic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. London Math. Soc., Third series7, 412–452 (1957)Google Scholar
  2. 2.
    Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann.212, 215–248 (1957)Google Scholar
  3. 3.
    Langton, S.G.: Valuative criteria for families of vector bundles on algebraic varieties. Ann. of Math.101, 88–110 (1975)Google Scholar
  4. 4.
    Numford, D.: Projective invariants of projective structures and applications. Proc. Intern. Cong. Math., Stockholm pp. 526–530 (1962)Google Scholar
  5. 5.
    Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik. Berlin, Heidelberg, New York: Springer 1965Google Scholar
  6. 6a.
    Narasimhan, M.S., Ramanan, S.: Vector bundles on curves. Proceedings of the Bombay Colloquium on Algebraic Geometry, Bombay 1968Google Scholar
  7. 6b.
    Narasimhan, M.S., Ramanan, S.: Deformations of the moduli space of vector bundles on curves. Ann. of Math.101, 391–417 (1975)Google Scholar
  8. 6c.
    Narashimhan, M.S., Ramanan, S.: Geometry of Hecke cycles. I. In: C.P. Ramanujam: A Tribute. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  9. 7.
    Narasimhan, M.S., Seshadri: C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math.82, 540–567 (1965)Google Scholar
  10. 8.
    Oda, T., Seshadri, C.S.: Compactification of the generalized Jacobian variety. Trans. Amer. Math. Soc. to appearGoogle Scholar
  11. 9.
    Prasad, P.K.: Cohomology of Fuchsian groups. J. Ind. Math. Soc.38, 51–63 (1974)Google Scholar
  12. 10.
    Seshadri, C.S.: Space of unitary vector bundles on a compact Riemann surface. Ann. of Math.85, 303–336 (1967)Google Scholar
  13. 11.
    Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. of Math.95, 511–556 (1972)Google Scholar
  14. 12.
    Seshadri, C.S.: Moduli of π-vector bundles over an algebraic curve. Questions on algebraic varieties, C.I.M.E., III CICLO, pp. 141–260(1969)Google Scholar
  15. 13.
    Seshadri, C.S.: Moduli of vector bundles with parabolic structures. Bull. Amer. Math. Soc.83, (1977)Google Scholar
  16. 14.
    Seshadri, C.S.: Desigularization of moduli varieties of vector bundles on curves. Proceedings of the International symposium on Algebraic Geometry, Kyoto, 1977Google Scholar
  17. 15.
    Seshadri, C.S.: Mumford's conjecture for GL(2) and applications, Proceedings of the Bombay Colloquium of algebraic geometry, pp. 343–371. Oxford: UNiversity Press 1968Google Scholar
  18. 16.
    Weil, A.: Generalisation des fonctions abeliennes. J. Math. Pures Appl.17, 47–87 (1938)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. B. Mehta
    • 1
  • C. S. Seshadri
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchColabaIndia

Personalised recommendations