Mathematische Annalen

, Volume 238, Issue 3, pp 229–280

Stable vector bundles of rank 2 onP3

  • Robin Hartshorne
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M. F., Rees, E.: Vector bundles on projective 3-space. Invent. math.35, 131–153 (1976)Google Scholar
  2. 2.
    Atiyah, M.F., Ward, R.S.: Instantons and algebraic geometry. Comm. math. Phys.55, 117–124 (1977)Google Scholar
  3. 3.
    Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Ju.I.: Construction of instantons. Phys. Lett.65A, 185–187 (1978)Google Scholar
  4. 4.
    Barth, W., Van de Ven, A.: A decomposability criterion for algebraic 2-bundles on projective spaces. Invent. math.25, 91–106 (1974)Google Scholar
  5. 5.
    Barth, W., Van de Ven, A.: On the geometry in codimension 2 of Grassmann manifolds. In: Classification of algebraic varieties and compact complex manifolds. Lecture Notes in Mathematics412, pp. 1–35. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  6. 6.
    Barth, W.: Some properties of stable rank-2 vector bundles on IPn. Math. Ann.226, 125–150 (1977)CrossRefGoogle Scholar
  7. 7.
    Barth, W.: Moduli of vector bundles on the projective plane. Invent. math.42, 63–91 (1977)Google Scholar
  8. 7a.
    Barth, W., Hulek, K.: Monads and moduli of vector bundles (preprint)Google Scholar
  9. 8.
    Ferrand, D.: Courbes gauches et fibrés de rang 2, C.R. Acad. Sci. (Paris)281, A345–347 (1975)Google Scholar
  10. 9.
    Ferrand, D.: Construction de fibrés de rang deux. Séminaire E.N.S, (1977–78) exposé 5 (preprint)Google Scholar
  11. 10.
    Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math.106, 45–60 (1977)Google Scholar
  12. 11.
    Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalen komplex-projektiven Raum. Manusc. math.16, 75–100 (1975)Google Scholar
  13. 12.
    Grauert, H., Schneider, M.: Komplexe Unterräume und holomorphe Vektorraumbündel vom Rang zwei. Math. Ann.230, 75–90 (1977)Google Scholar
  14. 13.
    Grothendieck, A.: Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert. Séminaire Bourbaki221 (1960/61)Google Scholar
  15. 14.
    Gruson, L., Peskine, C.: Genre des courbes de l'espace projectif (preprint)Google Scholar
  16. 15.
    Harris, J.: Untitled preprint (Nov. 1976)Google Scholar
  17. 16.
    Hartshorne, R.: A property of A-sequences. Bull. Soc. Math. France94, 61–66 (1966)Google Scholar
  18. 17.
    Hartshorne, R.: Varieties of small codimension in projective space. Bull. AMS80, 1017–1032 (1974)Google Scholar
  19. 18.
    Hartshorne, R.: The classification of curves in IP3 and related topics (lecture notes in Japanese), Ishida, M., Sato, E., eds. Math. Res. Lec. Notes2, Kyoto Univ. 74pp. (1977)Google Scholar
  20. 19.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math.52, 496pp. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  21. 20.
    Hartshorne, R.: Stable vector bundles and instantons. Comm. Math. Phys.59, 1–15 (1978)Google Scholar
  22. 21.
    Hirzebruch, F.: Topological methods in Algebraic Geometry, 3rd ed., Grundlehren der math. Wiss.131, 232 pp. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  23. 22.
    Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. (3),14, 689–713 (1964)Google Scholar
  24. 23.
    Horrocks, G.: A construction for locally free sheaves. Topology7, 117–120 (1968)Google Scholar
  25. 24.
    Horrocks, G., Mumford, D.: A rank 2 vector bundles on IP4 with 15,000 symmetries. Topology12, 63–81 (1973)Google Scholar
  26. 25.
    Horrocks, G.: Examples of rank three vector bundles on five dimensional projective space (preprint)Google Scholar
  27. 26.
    Kleiman, S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Publ. Math. IHES36, 281–298 (1969)Google Scholar
  28. 27.
    Maruyama, M.: On a family of algebraic vector bundles (in) Number Theory, Algebraic Geometry, and Commutative Algebra, in honor of Y. Akizuki. Kinokuniya, Tokyo 95–146 (1965)Google Scholar
  29. 28.
    Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J.58, 25–68 (1975)Google Scholar
  30. 29.
    Maruyama, M.: Openness of a family of torsion free sheaves. J. Math. Kyoto Univ.16, 627–637 (1976)Google Scholar
  31. 30.
    Maruyama, M.: Moduli of stable sheaves, I, J. Math., Kyoto Univ.17, 91–126 (1977)Google Scholar
  32. 31.
    Maruyama, M.: Moduli of stable sheaves, II (preprint)Google Scholar
  33. 32.
    Mumford, D.: Lectures on curves on an algebraic surface. Annals of Math. Studies59, Princeton Univ. Press, Princeton (1966) 200 pp.Google Scholar
  34. 33.
    Mumford, D.: Varieties defined by quadratic equations (with an Appendix by G. Kempf) in Questions on Algebraic Varieties. C.I.M.E. ed. Cremonese, Rome (1970), 29–100Google Scholar
  35. 34.
    Mumford, D.: Theta Characteristics of an algebraic curve. Ann. Sc. ENS4, 181–192 (1971)Google Scholar
  36. 35.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann Surface. Ann. Math.82, 540–567 (1965)Google Scholar
  37. 36.
    Peskine, C., Szpiro, L.: Liaison des variétés algébriques (I). Invent. math.26, 271–302 (1974)Google Scholar
  38. 37.
    Rao, A.P.: Liaison among curves in IP3 (preprint)Google Scholar
  39. 38.
    Saint-Donat, B.: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206, 157–175 (1963)Google Scholar
  40. 39.
    Sato, E.: On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties. J. Math. Kyoto Univ.17, 127–150 (1977)Google Scholar
  41. 40.
    Sato, E.: The decomposability of an infinitely extendable vector bundle on the projective space, II (preprint)Google Scholar
  42. 41.
    Sato, E.: On infinitely extendable vector bundles onG/P (preprint)Google Scholar
  43. 42.
    Serre, J.-P.: Sur les modules projectifs. Séminaire Dubreil-Pisot (1960/61), Secr. Math. Paris, exposé 2 (1961)Google Scholar
  44. 43.
    Takemoto, F.: Stable vector bundles on algebraic surfaces. Nagoya Math. J.47 (1972)Google Scholar
  45. 44.
    Tango, H.: On morphisms from projective space IPn to the Grassmann varietyGr(n, d) (preprint)Google Scholar
  46. 45.
    Tyurin, A.N.: Finite dimensional vector bundles over infinite varieties. Math. USSR Isvestija10, 1187–1204 (1976)Google Scholar
  47. 46.
    Wever, G.P.: The moduli of a class of rank 2 vector bundles on projective 3 space, thesis. Univ. Calif. Berkeley (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Robin Hartshorne
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations