Mathematische Annalen

, Volume 252, Issue 1, pp 1–26

Jacobi tensors and Ricci curvature

  • Jost-Hinrich Eschenburg
  • John J. O'Sullivan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avez, A.: Variétés riemanniennes sans points focaux. C. R. Acad. Sci. Paris Ser. A–B270, A 188-A 191 (1970)Google Scholar
  2. 2.
    Bishop, R.L.: A relation between volume, mean curvature and diameter. Not. Am. Math. Soc.10, 364 (1963)Google Scholar
  3. 3.
    Bishop, R.L., Crittenden, R.J.: Geometry of manifolds. New York: Academic Press 1964Google Scholar
  4. 4.
    Bishop, R.L., O'Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc.145, 1–48 (1969)Google Scholar
  5. 5.
    Bölts, G.: Existenz und Bedeutung von konjugierten Punkten in der Raum-Zeit. Diplomarbeit, Bonn University, 1977Google Scholar
  6. 6.
    Cheeger, J., Ebin, D.G.: Comparison theorems in riemannian geometry. Amsterdam: North-Holland 1975Google Scholar
  7. 7.
    Eberlein, P.: When is a geodesic flow Anosov? I. J. Differential Geometry8, 437–463 (1973)Google Scholar
  8. 8.
    Ehrlich, P.: Ricci curvature, Riccati equations, and the structure of complete riemannian manifolds (unpublished)Google Scholar
  9. 9.
    Eschenburg, J.-H.: Thesis, Bonn. Math. Schr.87, (1976)Google Scholar
  10. 10.
    Eschenburg, J.-H.: Horospheres and the stable part of the geodesic flow. Math. Z.153, 237–251 (1977)Google Scholar
  11. 11.
    Eschenburg, J.-H., O'Sullivan, J.J.: Growth of Jacobi fields and divergence of geodesics. Math. Z.150, 221–237 (1976)Google Scholar
  12. 12.
    Green, L.W.: A theorem of E. Hopf. Mich. Math. J.5, 31–34 (1958)Google Scholar
  13. 13.
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. In: Lecture Notes in Mathematics, No. 55. Berlin, Heidelberg, New York: Springer 1968Google Scholar
  14. 14.
    Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. of Math.90, 75–90 (1969)Google Scholar
  15. 15.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press 1973Google Scholar
  16. 16.
    Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A314, 529–548 (1970)Google Scholar
  17. 17.
    Heintze, E., Imhof, H.C.: On the geometry of horospheres. J. Differential Geometry12, 481–491 (1977)Google Scholar
  18. 18.
    Hermann, R.: Focal points of closed submanifolds of Riemannian spaces. Proc. Ned. Akad. Wet.66, 613–628 (1963)Google Scholar
  19. 19.
    Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. of Math.101, 317–331 (1975)Google Scholar
  20. 20.
    Milnor, J.: A note on curvature and the fundamental group. J. Differential Geometry2, 1–7 (1968)Google Scholar
  21. 21.
    Myers, S.W.: Riemannian manifolds with positive mean curvature. Duke Math. J.8, 401–404 (1941)Google Scholar
  22. 22.
    Nagano, T., Smyth, B.: Minimal varieties and harmonic maps in tori. Comm. Math. Helv.50, 259–265 (1975)Google Scholar
  23. 23.
    Penrose, R.: Techniques of differential topology in relativity. SIAM Reg. Conf. Ser. Appl. Math.7, (1972)Google Scholar
  24. 24.
    Tipler, F.: General relativity and conjugate ordinary differential equations. J. Differential Equations30, 165–174 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jost-Hinrich Eschenburg
    • 1
  • John J. O'Sullivan
    • 2
  1. 1.Mathematisches Institut der UniversitätMünsterGermany
  2. 2.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations