Advertisement

Inventiones mathematicae

, Volume 15, Issue 2, pp 164–170 | Cite as

On the difference between consecutive primes

  • M. N. Huxley
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haneke, W.: Verschärfung der Abschätzung von ζ(1/2+it). Acta Arithmetica8, 357–430 (1963).Google Scholar
  2. 2.
    Ingham, A. E.: On the difference between consecutive primes. Quarterly J. Math. (Oxford)8, 255–266 (1937).Google Scholar
  3. 3.
    —: On the estimation ofN(σ,T). Quarterly J. Math. (Oxford)11, 291–292 (1940).Google Scholar
  4. 4.
    Jutila, M.: On the Dirichlet polynomial method in the theory of zeta andL-functions (to appear).Google Scholar
  5. 5.
    Montgomery, H. L.: Mean and large values of Dirichlet polynomials. Inventiones math.8, 334–345 (1969).CrossRefGoogle Scholar
  6. 6.
    —: Zeros ofL-functions. Inventiones math.8, 346–354 (1969).CrossRefGoogle Scholar
  7. 7.
    —: Topics in multiplicative number theory. Lecture notes in mathematics227. Berlin-Heidelberg-New York: Springer 1971.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • M. N. Huxley
    • 1
  1. 1.Department of Pure MathematicsUniversity CollegeCardiff 1UK

Personalised recommendations