Inventiones mathematicae

, Volume 15, Issue 2, pp 91–143 | Cite as

Affine root systems and Dedekind'sη-function

  • I. G. Macdonald
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6. Paris: Hermann 1969.Google Scholar
  2. 1.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. I.H.E.S., 41 (to appear).Google Scholar
  3. 2.
    Freudenthal, H., Vries, H. de: Linear Lie groups. New York: Academic Press 1969.Google Scholar
  4. 3.
    Hardy, G. H., Wright, E. M.: Introduction to the theory of numbers (4th edition). Oxford: Oxford University Press 1959.Google Scholar
  5. 4.
    Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973–1032 (1959).Google Scholar
  6. 5.
    Macdonald, I. G.: The Poincaré series of a Coxeter group (to appear).Google Scholar
  7. 6.
    Winquist, L.: Elementary proof ofp(11m+6)≡0 (mod 11). J. Comb. Theory6, 56–59 (1969).Google Scholar
  8. 7a.
    Moody, R. V.: A new class of Lie algebras. J. Alg.10, 211–230 (1968).CrossRefGoogle Scholar
  9. 7b.
    —: Euclidean Lie algebras. Can. J. Math.21, 1432–1454 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • I. G. Macdonald
    • 1
  1. 1.Magdalen CollegeOxfordUK

Personalised recommendations