Inventiones mathematicae

, Volume 15, Issue 2, pp 91–143 | Cite as

Affine root systems and Dedekind'sη-function

  • I. G. Macdonald


Root System Affine Root System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6. Paris: Hermann 1969.Google Scholar
  2. 1.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. I.H.E.S., 41 (to appear).Google Scholar
  3. 2.
    Freudenthal, H., Vries, H. de: Linear Lie groups. New York: Academic Press 1969.Google Scholar
  4. 3.
    Hardy, G. H., Wright, E. M.: Introduction to the theory of numbers (4th edition). Oxford: Oxford University Press 1959.Google Scholar
  5. 4.
    Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973–1032 (1959).Google Scholar
  6. 5.
    Macdonald, I. G.: The Poincaré series of a Coxeter group (to appear).Google Scholar
  7. 6.
    Winquist, L.: Elementary proof ofp(11m+6)≡0 (mod 11). J. Comb. Theory6, 56–59 (1969).Google Scholar
  8. 7a.
    Moody, R. V.: A new class of Lie algebras. J. Alg.10, 211–230 (1968).CrossRefGoogle Scholar
  9. 7b.
    —: Euclidean Lie algebras. Can. J. Math.21, 1432–1454 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • I. G. Macdonald
    • 1
  1. 1.Magdalen CollegeOxfordUK

Personalised recommendations