Inventiones mathematicae

, Volume 57, Issue 3, pp 283–289 | Cite as

A simplification and extension of Fefferman's theorem on biholomorphic mappings

  • Steve Bell
  • Ewa Ligocka
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedford, E., Fornaess, J.: Biholomorphic maps of weakly pseudoconvex domains. Duke Math. J.45, 711–719 (1978)Google Scholar
  2. 2.
    Bell, S.: Non-vanishing of the Bergman kernel function at boundary points of certains in ℂn. Math. Ann.244, 69–74 (1979)Google Scholar
  3. 3.
    Bell. S.: A representation theorem in strictly pseudoconvex domains. In press (1980)Google Scholar
  4. 4.
    Boutet de Monvel, L., sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Soc. Mat. de France, Astérisque34–35, 123–164 (1976)Google Scholar
  5. 5.
    Diederich, K., Fornaess, J.: Pseudoconvex domains with real-analytic boundary. Ann. of Math.107, 371–384 (1978)Google Scholar
  6. 6.
    Diederich, K., Fornaess, J.: Proper holomorphic maps onto pseudoconvex domains with real analytic boundary. PreprintGoogle Scholar
  7. 7.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1–65 (1974)Google Scholar
  8. 8.
    Folland, G., Kohn, J.J.: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, No. 75, Princeton Univ. Press 1972Google Scholar
  9. 9.
    Kerzman, N.: The Bergman kernel. Differentiability at the boundary. Math. Ann.195, 149–158 (1972)Google Scholar
  10. 10.
    Kohn, J.J.: Harmonic integrals on strongly pseudoconvex manifolds, I and II. Ann. of Math.78, 112–148 (1963) and79, 450–472 (1964)Google Scholar
  11. 11.
    Kohn, J.J.: Sufficient conditions for subellipticity on weakly pseudoconvex domains. Proc. Nat. Acad. Sci. U.S.A.74, 2214–2216 (1977)Google Scholar
  12. 12.
    Kohn, J.J.: Subellipticity of the\(\overline \partial\)-Neumann problem on pseudoconvex domains: sufficient conditions. Acta Math.142, 79–122 (1979)Google Scholar
  13. 13.
    Ligocka, E.: How to prove Fefferman's theorem without use of differential geometry. Ann. Pol. Math. (to appear)Google Scholar
  14. 14.
    Ligocka, E.: Some remarks on extension of biholomorphic mappings. Proceedings of the 7-th Conference of Analytic Functions, Kozubnik, Poland 1979, Springer Lecture Notes (to appear)Google Scholar
  15. 15.
    Ligocka, E.: On boundary behavior of the Bergman kernel function for plane domains and their cartesian products (to appear)Google Scholar
  16. 16.
    Range, M.: The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains. Pacific J. of Math78, 173–189 (1978)Google Scholar
  17. 17.
    Webster, S.: Biholomorphic mappings and the Bergman kernel off the diagonal. Invent. Math.51, 155–169 (1979)Google Scholar
  18. 18.
    Webster, S.: On the proof of boundary smoothness of biholomorphic mappings. Preprint 1978Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Steve Bell
    • 1
  • Ewa Ligocka
    • 2
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.WarsawPoland

Personalised recommendations