Inventiones mathematicae

, Volume 12, Issue 3, pp 177–209 | Cite as

Undecidability and nonperiodicity for tilings of the plane

  • Raphael M. Robinson


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. no.66, (1966).Google Scholar
  2. 2.
    Büchi, J. R.: Turing-machines and the Entscheidungsproblem. Math. Ann.148, 201–213 (1962).Google Scholar
  3. 3.
    Cocke, J., Minsky, M.: Universality of tag systems withP=2. J. Assoc. Comput. Mach.11, 15–20 (1964).Google Scholar
  4. 4.
    Kahr, A. S., Moore, E. F., Wang, H.: Entscheidungsproblem reduced to the AEA case. Proc. Nat. Acad. Sci. U.S.A.48, 365–377 (1962).Google Scholar
  5. 5.
    König, D.: Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt. Sci. Szeged3, 121–130 (1927).Google Scholar
  6. 6.
    Minsky, M. L.: Computation: Finite and infinite machines. Englewood Cliffs, N.J.: Prentice-Hall 1967.Google Scholar
  7. 7.
    Robinson, R. M.: Seven polygons which permit only nonperiodic tilings of the plane (abstract). Notices Amer. Math. Soc.14, 835 (1967).Google Scholar
  8. 8.
    Wang, H.: Proving theorems by pattern recognition — II. Bell System Tech. J.40, 1–41 (1961).Google Scholar
  9. 9.
    —: Dominoes and the AEA case of the decision problem, Mathematical theory of automata, p. 23–55. Brooklyn, N. Y.: Polytechnic Press 1963.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Raphael M. Robinson
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations