Advertisement

Inventiones mathematicae

, Volume 10, Issue 4, pp 305–331 | Cite as

Topology and mechanics. I

  • S. Smale
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R.: Foundations of mechanics. New York, Benjamin 1967.Google Scholar
  2. 2.
    —, Robbin, J.: Transversal mappings and flows. New York: Benjamin 1967.Google Scholar
  3. 3.
    Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique de fluides parfaits. Ann. de l'Inst. Fourier, Grenoble XVI, 319–361 (1966).Google Scholar
  4. 4.
    —, Avez, A.: Problèmes ergodiques de la mécanique classique. Paris: Hermann 1967.Google Scholar
  5. 5.
    Birkhoff, G.: Dynamical systems. Providence: Amer. Math. Soc. 1966 (originally published 1972).Google Scholar
  6. 6.
    Bott, R.: Non-degenerate critical manifolds. Ann. of Math.60, 248–261 (1954).Google Scholar
  7. 7.
    Cartan, E.: Léçons sur les invariants intégraux. Paris 1958 (originally written 1921).Google Scholar
  8. 8.
    Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955.Google Scholar
  9. 9.
    Godbillion, C.: Géométrie différentielle et mécanique analytique. Paris: Hermann 1969.Google Scholar
  10. 10.
    Goldstein, H.: Classical mechanics. Reading, Mass: Addison-Wesley 1950.Google Scholar
  11. 11.
    Hermann, R.: Differential geometry and the calculus of variations. New York: Academic Press 1968.Google Scholar
  12. 12.
    Kaplan, W.: Topology of the two-body problem. Amer. Math. Monthly49, 316–323 (1942).Google Scholar
  13. 13.
    Loomis, L., Sternberg, S.: Advanced calculus. Reading, Mass: Addison-Wesley 1968.Google Scholar
  14. 14.
    Loud, W.: Periodic solutions of perturbed second-order autonomous equations. Mem. Amer. Math. Soc. (publisher) and Providence, R.I.47 (1964).Google Scholar
  15. 15.
    Nomizu, K.: Lie groups and differential geometry. Math. Soc. Japan 1956.Google Scholar
  16. 16.
    Palais, R.: Morse theory of Hilbert manifolds. Topology2, 299–340 (1963).CrossRefGoogle Scholar
  17. 17.
    Schwartz, J.: Generalizing the Lusternik-Schnirelman theory of critical points. Comm. Pure Appl. Math.17, 307–315 (1964).Google Scholar
  18. 18.
    Smale, S.: Morse Theory and a non-linear generalization of the Dirichlet problem. Ann. of Math.80, 382–396 (1964).Google Scholar
  19. 19.
    Struik, D.: Lectures on classical differential geometry. Cambridge, Mass: Addison-Wesley 1950.Google Scholar
  20. 20.
    Wasserman, A.: Equivariant differential topology. Topology,8, 127–150 (1969).CrossRefGoogle Scholar
  21. 21.
    Wintner, A.: The analytical foundations of celestical mechanics. Princeton, N.J.: University Press 1941.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • S. Smale
    • 1
  1. 1.Istituto Matematico “Leonida Tonelli”Università di PisaPisaItalia

Personalised recommendations