Numerische Mathematik

, Volume 41, Issue 3, pp 345–371

Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable

  • Vidar Thomée
  • Lars B. Wahlbin
Article

Summary

Maximum-norm stability and error estimates of best approximation and nonsmooth data types are derived for the approximate solution of a parabolic equation in one space variable, using the continuous in time Galerkin method based on piecewise polynomial approximating functions on a quasi-uniform mesh.

Subject Classifications

AMS(MOS): 65N30 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška, I., Osborn, J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math.34, 41–62 (1980)Google Scholar
  2. 2.
    DeBoor, C., Fix, G.J.: Spline approximation by quasiinterpolants. J. Approximation Theory8, 19–45 (1973)Google Scholar
  3. 3.
    Descloux, J.: On finite element matrices. SIAM J. Numer. Anal.9, 260–265 (1972)Google Scholar
  4. 4.
    Dobrowolski, M.: ZurL -Konvergenz finiter Elemente bei parabolischen Differentialgleichungen. Math. Methods Appl. Sci.2, 221–234 (1980)Google Scholar
  5. 5.
    Dobrowolski, M.:L -convergence of linear finite element approximation to nonlinear parabolic problems. SIAM J. Numer. Anal.17, 663–674 (1980)Google Scholar
  6. 6.
    Douglas, J., Jr., Dupont, T., Wahlbin, L.B.: OptimalL error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comput.29, 475–483 (1975)Google Scholar
  7. 7.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs: Prentice-Hall 1964Google Scholar
  8. 8.
    Friedman, A.: Partial Differential Equations. New York: Rinehart and Winston, 1969Google Scholar
  9. 9.
    Krein, S.G., Petunin, Y.I.: Scales of Banach spaces. Russian Math. Surveys21, 85–160 (1966)Google Scholar
  10. 10.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  11. 11.
    Nitsche, J.A.:L -convergence of finite element approximation. 2. Conference on Finite Elements, Rennes, France, May 12–14, 1975Google Scholar
  12. 12.
    Nitsche, J.A.:L -convergence of finite-element Galerkin approximations on parabolic problems. RAIRO Anal. Numér.13, 31–54 (1979)Google Scholar
  13. 13.
    Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math.33, 265–304 (1980)Google Scholar
  14. 14.
    Schreiber, R.: Finite element methods of high-order accuracy for singular two-point boundary value problems with nonsmooth solutions. SIAM J. Numer. Anal.17, 547–566 (1980)Google Scholar
  15. 15.
    Thomée, V.: Spline approximation and difference schemes for the heat equation. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Aziz, A.K. (ed.), pp. 711–746. New York: Academic Press 1972Google Scholar
  16. 16.
    Thomée, V.: Some convergence results for Galerkin methods for parabolic boundary value problems. Mathematical Aspects of Finite Elements in Partial Differential Equations. DeBoor, C. (ed.), pp. 55–88. New York: Academic Press 1974Google Scholar
  17. 17.
    Wahlbin, L.B.: A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems. Numerical Analysis. Watson, G.A. (ed.), pp. 230–245. Berlin, Heidelberg, New York: Springer Lecture Notes in Mathematics 912, 1982Google Scholar
  18. 18.
    Wheeler, M.F.:L estimates of optimal orders for Galerkin methods for one dimensional second order parabolic and hyperbolic equations. SIAM J. Numer. Anal.10, 908–913 (1973)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Vidar Thomée
    • 1
    • 2
  • Lars B. Wahlbin
    • 1
    • 2
  1. 1.Department of MathematicsChalmers University of TechnologyGöteborgSweden
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations