Zeitschrift für Physik A Atoms and Nuclei

, Volume 308, Issue 3, pp 237–241 | Cite as

Importance of the three-body Pauli potential in three-cluster systems

  • E. W. Schmid
  • M. Orlowski
  • Bao Cheng-guang


The ground state energies of the 3α system and of theA-α-α system are calculated in the three-cluster fish bone optical model [1], It is found that the three-cluster Pauli potential is very strong in theM-version of the model and weak in the (off-shell transformed)¯M-version. Its influence on theΛ-α-α binding energy and ground state wave function is almost negligible in the¯M-version. The present results indicate that phenomenological three-cluster models with energy-independent two-cluster interactions are not necessarily in contradiction with more microscopic models. It seems to be important, however, to use potentials which contain in their off-shell behaviour both Pauli-principle and saturation character of the nuclear forces.


Wave Function Binding Energy Elementary Particle State Energy Ground State Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmid, E.W.: Z. Phys. A — Atoms and Nuclei302, 311 (1981)Google Scholar
  2. 2.
    Wildermuth, K., Tang, Y.C.: A Unified Theory of the Nucleus. In: Clustering phenomena in nuclei. Vol. 1. Braunschweig: Vieweg 1977Google Scholar
  3. 3.
    Schmid, E.W.: Phys. Rev. C21, 691 (1980)Google Scholar
  4. 4.
    Schmid, E.W.: Two- and three-body interactions of composite particles. Preprint 1977 (unpublished)Google Scholar
  5. 5.
    Zaikin, D.A.: Nucl. Phys. A170, 584 (1971)Google Scholar
  6. 6.
    Kircher, R., Schmid, E.W.: Z. Phys. A — Atoms and Nuclei299, 241 (1980)Google Scholar
  7. 7.
    Schmid, E.W., Wildermuth, K.: Nucl. Phys.26, 463 (1961)Google Scholar
  8. 8.
    Tang, Y.C., Herndon, R.C.: Nuovo Cimento46 B, 117 (1966)Google Scholar
  9. 9.
    Tobocman, W.: Nucl. Phys. A357, 293 (1981)Google Scholar
  10. 10.
    Tohsaki-Suzuki, A., Kamimura, M., Ikeda, K.: Prog. Theor. Phys. Suppl.68, 359 (1980)Google Scholar
  11. 11.
    Akaishi, Y., Schmid, E.W.: (to be published)Google Scholar
  12. 12.
    Bodmer, A.R., Ali, S.: Nucl. Phys.56, 657 (1964)Google Scholar
  13. 13.
    Rayet, M.: Nucl. Phys. B38, 387 (1972)Google Scholar
  14. 14.
    Verma, S.P., Sural, D.P.: Phys. Rev. C20, 781 (1979)Google Scholar
  15. 15.
    Révai, J., Žofka, J.: Molecular three-body approach toΛ9Be andΣ9Be hypernuclei. Preprint 1981Google Scholar
  16. 16.
    Leeb, H., Oberhummer, H.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • E. W. Schmid
    • 1
  • M. Orlowski
    • 1
  • Bao Cheng-guang
    • 1
  1. 1.Institut für Theoretische Physik der UniversitätTübingenFederal Republic of Germany

Personalised recommendations