Advertisement

Journal of Insect Behavior

, Volume 3, Issue 2, pp 143–157 | Cite as

The escape strategy of green lacewings from orb webs

  • W. Mitchell Masters
  • Thomas Eisner
Article

Abstract

When green lacewings (Neuroptera: Chrysopidae) fly into spider orb webs, they often simply reverse their flight direction and pull away (Table I). If a lacewing is trapped, it uses a specialized escape behavior. It first cuts away the sticky strands entangling head, feet, and antennae. If an antenna cannot be freed by tugging, it uses an “antenna climb” (Fig. 5A). After its body is free, the lacewing remains suspended by its hair-covered wings, which are held in a characteristic cruciform position (Fig. 5B). Orb web sticky strands adhere poorly to the hairy wings (Fig. 7), so the chrysopid may just wait until the strands slide off and it falls free. If placed in an orb web when the spider is at the web hub and ready to attack, a lacewing usually does not have time to escape (Fig. 1). When the spider is at the hub but eating, the chances of escape improve, and when the spider is away from the hub attacking other prey, nearly all lacewings in our experiment were able to escape. This finding emphasizes the importance of the spider's activity in its capture success.

Key words

Chrysopidae Araneidae lacewings spiders orb webs escape behavior prey capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, M. S., Wallace, J. B., and Fales, H. M. (1973). Skatole and tridecene: Identification and possible role in a chrysopid secretion.Insect Biochem. 3: 353–357.Google Scholar
  2. Brown, K. S. (1984). Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator.Nature 309: 707–709.Google Scholar
  3. Craig, C. L. (1986). Orb-web visibility: The influence of insect flight behavior and visual physiology on the evolution of web designs within the Araneoidea.Anim. Behav. 34: 54–68.Google Scholar
  4. Craig, C. L. (1987). The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders.Biol. J. Linn. Soc. 30: 135–162.Google Scholar
  5. Craig, C. L., Okubo, A., and Andreasen, V. (1985). Effect of spider orb-web and insect oscillations on prey interception.J. Theor. Biol. 115: 201–211.Google Scholar
  6. Denny, M. (1976). The physical properties of spider's silk and their role in the design of orb-webs.J. Exp. Biol. 65: 483–506.Google Scholar
  7. Eberhard, W. G. (1986). Effects of orb-web geometry on prey interception and retention. In Shear, W. A. (ed.),Spiders: Webs, Behavior and Evolution, Stanford University Press, Stanford, Calif. pp. 70–100.Google Scholar
  8. Eisner, T. (1982). For love of nature: Exploration and discovery at biological field stations.BioScience 32: 321–326.Google Scholar
  9. Eisner, T., Alsop, R., and Ettershank, G. (1964). Adhesiveness of spider silk.Science 146: 1058–1061.PubMedGoogle Scholar
  10. Gepp, J. (1984). Morphology and anatomy. In Canard, M., Séméria, Y., and New, T. R. (eds.),Biology of Chrysopidae, W. Junk, The Hague, pp. 9–36.Google Scholar
  11. Hollander, M., and Wolfe, D. A. (1973).Nonparametric Statistical Methods, Wiley, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  12. Larcher, S. F., and Wise, D. H. (1985). Experimental studies of the interactions between a web-invading spider and two host species.J. Aracknol. 13: 43–59.Google Scholar
  13. Masters, W. M. (1984). Vibrations in the orbwebs ofNuctinea sclopertaria (Araneidae). I. Transmission through the web.Behav. Ecol. Sociobiol. 15: 207–215.Google Scholar
  14. Masters, W. M., and Moffat, A. J. M. (1983). A functional explanation of top-bottom asymmetry in vertical orbwebs.Anim. Behav. 81: 1043–1046.Google Scholar
  15. Nentwig, W. (1982). Why do only certain insects escape from a spider's web?Oecologia (Berl.) 53: 412–417.Google Scholar
  16. Olive, C. W. (1980). Foraging specializations in orb-weaving spiders.Ecology 61: 1133–1144.Google Scholar
  17. Rothschild, M., von Euw, J., and Reichstein, T. (1973). Cardiac glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa).J. Entomol. 48: 89–90.Google Scholar
  18. Sakan, T., Isoe, S., and Hyeon, S. B. (1970). The chemistry of attractants for Chrysopidae fromActinidia olygama Mig. In Wood, D. L., Silverstein, R. M., and Nakajima, M. (eds.).Control of Insect Behavior by Natural Products, Academic Press, New York, pp. 237–247.Google Scholar
  19. Stern, H., and Kullmann, E. (1981).Leben am seidenen Faden, Kindler, Munich.Google Scholar
  20. Thornhill, R. (1975). Scorpionflies as kleptoparasites of web-building spiders.Nature 258: 709–711.Google Scholar
  21. Vollrath, F. (1979). Behavior of the kleptoparasitic spiderArgyrodes elevatus (Araneae, Theridiidae).Anim. Behav. 27: 515–521.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • W. Mitchell Masters
    • 1
  • Thomas Eisner
    • 2
  1. 1.Department of ZoologyOhio State UniversityColumbus
  2. 2.Section ofNeurobiology and BehaviorCornell UniversityIthaca

Personalised recommendations