Advertisement

Zeitschrift für Operations Research

, Volume 35, Issue 4, pp 309–320 | Cite as

On duality in the vectorial control-approximation problem

  • G. Wanka
Theory

Abstract

The author formulates vectorial dual problems for a certain class of vectorial control-approximation problems in real reflexive Banach spaces. A number of propositions concerning duality are derived. Corresponding propositions are mentioned for the special case of the vectorial location problems.

Key words

vectorial control-approximation problem vectorial location problem duality efficiency 

Zusammenfassung

In der Arbeit werden für eine Klasse von vektoriellen Steuer-Approximationsproblemen in reellen reflexiven Banachräumen vektorielle Dualprobleme konstruiert und Dualitätseigenschaften hergeleitet. Als Spezialfall ergeben sich entsprechende Aussagen für vektorielle Standortprobleme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borwein JM (1977) Proper efficient points for maximation with respect to cones. SIAM J Control Optim 15:57–63Google Scholar
  2. Brumelle S (1981) Duality for multiple objective convex programs. Math of Operations Research 6:159–172Google Scholar
  3. Chalmet LG, Francis RL (1981) Finding efficient solutions for rectilinear distance location problems efficiently. European Journal of Operational Research 6:117–124Google Scholar
  4. Durier R (1987) Sets of efficiency in a normed space and inner product. In: Krabs W, Jahn J (eds) Lecture Notes in Economics and Mathematical Systems. Springer, Berlin Heidelberg New York 294:114–128Google Scholar
  5. Durier R, Michelot Ch (1986) Sets of efficient points in a normed space. J Math Appl 117:506–528Google Scholar
  6. Ekeland J, Temam R (1976) Convex analysis and variational problems. North-Holland, AmsterdamGoogle Scholar
  7. Goeffrion AM (1968) Proper efficiency and the theory of vector maximization. J Math Anal Appl 22:618–630Google Scholar
  8. Gerth Ch, Pöhler K (1988) Dualität und algorithmische Anwendung beim vektoriellen Standortproblem. Optimization 19:491–512Google Scholar
  9. Gerth Ch, Göpfert A, Pöhler K (1988) Vektorielles Standortproblem und Dualität. Wiss Z Karl-Marx-Universität, Leipzig. Math-Naturwiss R 37:305–312Google Scholar
  10. Jahn J (1986) Mathematical vector optimization in partially ordered linear spaces. Meth u Verf d math Phys 31. Verlag Peter Lang, FrankfurtGoogle Scholar
  11. Jahn J (1983) Zur vektoriellen linearen Tschebyscheff-Approximation. Math Operationsforsch u Statistik. Ser Optimization 14:577–591Google Scholar
  12. Juel H (1981) Bounds in the generalized Weber problem under locational uncertainty. Operations Research 29:1219–1227Google Scholar
  13. Kuhn H-W (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Nonlinear programming. Wiley, New York, pp 37–54Google Scholar
  14. Kuhn H-W (1973) A note on Fermat's problem. Math Progr 4:98–107Google Scholar
  15. Lai HC, Yang LS (1989) Strong duality for infinite dimensional vector valued programming problems. J Optim Theor Appl 62:449–466Google Scholar
  16. Loridan P (1984) A dual approach to the generalized Weber problem under locational uncertainty. Cahiers du CERO 26:241–253Google Scholar
  17. Rubinštein GŠ (1973) Issledovanija dvoistvennym ekstremal'nym zadačam. Optimizacija. Akademija Nauk Novosibirsk 9:13–149Google Scholar
  18. Wanka G (1989) Dualität beim skalaren und vektoriellen Standortproblem. Wiss Z TH Merseburg 31:682–687Google Scholar
  19. Wanka G (1990) Dualität beim skalaren Standortproblem (in preparation)Google Scholar
  20. Wendell RE, Hurter AP, Lowe TJ (1977) Efficient points in location problems. AIIE Transactions 9:238–246Google Scholar

Copyright information

© Physica-Verlag 1991

Authors and Affiliations

  • G. Wanka
    • 1
  1. 1.Sektion MathematikTechnische Hochschule “Carl Schorlemmer” Leuna-MerseburgMerseburgFRG

Personalised recommendations