Zeitschrift für Operations Research

, Volume 42, Issue 1, pp 109–125 | Cite as

Subdifferentials with respect to dualities

  • Juan-Enrique Martinez-Legaz
  • Ivan Singer
Articles

Abstract

LetX andW be two sets andΔ: ¯RX → ¯RW a duality (i.e., a mapping\(\Delta :f \in \bar R^X \to f^\Delta \in \bar R^W \) such that\(\left( {\mathop {\inf f_i }\limits_{i \in I} } \right)^\Delta = \mathop {\sup }\limits_{i \in I} f_i^\Delta \) for all\(\{ f_i \} _{i \in I} \subseteq \bar R^X \) and all index setsI). We introduce and study the subdifferential\(\partial ^\Delta f(x_0 )\) of a function\(f \in \bar R^X \) at a pointxo∈ X, with respect toΔ. We also consider the particular cases whenΔ is a (Fenchel-Moreau) conjugation, or a ∨ -duality, or a ⊥-duality, in the sense of [8].

Key Words

Dualities generalized subdifferentials conjugations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balder EJ (1977) An extension of duality-stability relations to nonconvex optimization problems. SIAM J Control Optim 15:329–343Google Scholar
  2. [2]
    Dolecki S, Kurcyusz S (1978) OnΦ-convexity in extremal problems. SIAM J Control Optim 16:277–300Google Scholar
  3. [3]
    Elster K-H, Göpfert A (1990) Conjugation concepts in optimization. In: Methods of Oper Res vol 62 Rieder U, Gessner P, Peyerimhoff A, Radermacher FJ (Eds) 53–65. Hain A Meisenheim GmbH Frankfurt am MainGoogle Scholar
  4. [4]
    Greenberg HJ, Pierskalla WP (1973) Quasi-conjugate functions and surrogate duality. Cahiers Centre d'Et Rech Opér 15:437–448Google Scholar
  5. [5]
    Lindberg PO (1979) A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality. In: Survey of Mathematical Programming. Proc 9th Internat Math Progr Symposium, Budapest 1976 vol I, 249–267. North Holland AmsterdamGoogle Scholar
  6. [6]
    Martínez-Legaz J-E (1988) Quasiconvex duality theory by generalized conjugation methods. Optimization 19:603–652Google Scholar
  7. [7]
    Martínez-Legaz J-E, Singer I (1990) Dualities between complete lattices. Optimization 21:481–508Google Scholar
  8. [8]
    Martínez-Legaz J-E, Singer I (1991) ∨ -dualities and ⊥-dualities. Optimization 22:483–511Google Scholar
  9. [9]
    Moreau J-J (1966–1967) Fonctionnelles convexes. Sémin Eq Dériv Part Collège de France Paris No 2Google Scholar
  10. [10]
    Moreau J-J (1970) Inf-convolution, sous-additivité, convexité des fonctions numériques. J Math Pures Appl 49:109–154Google Scholar
  11. [11]
    Singer I (1983) Surrogate conjugate functionals and surrogate convexity. Appl Anal 16:291–327Google Scholar
  12. [12]
    Singer I (1984) Conjugation operators. In: Selected topics in operations research and mathematical economics Hammer G, Pallaschke D (Eds) Lecture Notes in Econ and Math Systems 226:80–97. Springer-Verlag Berlin-Heidelberg-New York-TokyoGoogle Scholar
  13. [13]
    Singer I (1986) Some relations between dualities, polarities, coupling functionals and conjugations. J Math Anal Appl 115:1–22Google Scholar
  14. [14]
    Singer I (1987) Infimal generators and dualities between complete lattices. Ann Mat Pura Appl (4) 148:289–358Google Scholar
  15. [15]
    Zabotin Ya I, Korablev AI, Habibullin RF (1973) Conditions for an extremum of a functional in the presence of constraints. Kibernetika 6:65–70Google Scholar

Copyright information

© Physica-Verlag 1995

Authors and Affiliations

  • Juan-Enrique Martinez-Legaz
    • 1
  • Ivan Singer
    • 2
  1. 1.Dept. Economia i Historia EconomicaUniversitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Institute of Mathematics of the Romanian AcademyBucharestRomania

Personalised recommendations