Colloid and Polymer Science

, Volume 261, Issue 8, pp 694–707 | Cite as

A direct method for studying particle deposition onto solid surfaces

  • T. Dabroś
  • T. G. M. van de Ven
Colloid Science

Abstract

An experimental technique has been developed to study the deposition of colloidal particles under well controlled hydrodynamic conditions. The deposition process is observed under a microscope and recorded on video tape for further analysis. Fluid flow conditions in the experimental set-up were determined by numerical solution of the Navier-Stokes equations. Mass transfer equations were solved numerically (taking into account hydrodynamic, gravitational, electric double layer, and dispersion forces) for the stagnation point region. Also, some analytical solutions are presented. Deposition has been studied of 0.5μm polystyrene latex particles on cover glass slides used as collectors. From an analysis of the shape of the coating density vs. time curves and independently from the distribution of the particles on collector surfaces, it was found that one particle is able to block an area of about 20 to 30 times its geometrical cross-section. The initial flux of particles to the collector for a given salt concentration was found to depend strongly on the method of cleaning the collector surface. In general the flux and the escape of particles to and from the collector surface are sensitive to the interaction energy at small separations. The direct method of observing particle deposition and detachment could lead to important insights into the nature of particle-wall interactions at near contact.

Key words

Particle deposition stagnation point flow collector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleaver, J. W., B. Yates, J. Coll. Interface Sci.44, 464 (1973).Google Scholar
  2. 2.
    Dabroś, T., T. G. M. van de Ven, J. Coll. Interface Sci.89, 232 (1982).Google Scholar
  3. 3.
    Dabroś, T., Z. Adamczyk, Chem. Eng. Sci.34, 1041 (1979).Google Scholar
  4. 4.
    Adamczyk, Z., T. Dabroś, J. Coll. Interface Sci.64, 580 (1978).Google Scholar
  5. 5.
    Adamczyk, Z., T. G. M. van de Ven, J. Colloid Interface Sci. (in press).Google Scholar
  6. 6.
    Hull, M., J. A. Kitchener, Trans. Farady Soc.65, 3093 (1969).Google Scholar
  7. 7.
    Clint, G. E., J. H. Clint, J. M. Corkill, T. Walker, J. Coll. Interface Sci.44, 121 (1973).Google Scholar
  8. 8.
    Dabroś, T., Ph. D. dissertation, Krakow, 1977.Google Scholar
  9. 9.
    Adamczyk, Z., Ph. D. dissertation, Krakow, 1978.Google Scholar
  10. 10.
    Glauert, M. B., J. Fluid Mech.1, 625 (1956).Google Scholar
  11. 11.
    Yamada, J., M. Matsuda, J. Electroanal. Chem.44, 189 (1973).Google Scholar
  12. 12.
    Gosman, A. D., W. M. Pun, A. K. Runchal, D. B. Spalding, M. Wolfshtein, Heat and Mass Transfer in Recirculating Flows, Academic Press, London 1969.Google Scholar
  13. 13.
    Deshpande, M. D., R. N. Vaishnav, J. Fluid Mech.114, 213 (1982).Google Scholar
  14. 14.
    Adamczyk, Z., T. G. M. van de Ven, J. Coll. Interface Sci.84, 497 (1981).Google Scholar
  15. 15.
    Brenner, H., Chem. Eng. Sci.16, 242 (1961).Google Scholar
  16. 16.
    Goren, S. L. M. E. O'Neill, Chem. Eng. Sci.26, 325 (1971).Google Scholar
  17. 17.
    Bart, E., Chem. Eng. Sci.23, 193 (1968).Google Scholar
  18. 18.
    Goldman, A. J., R. G. Cox, H. Brenner, Chem. Eng. Sci.22, 637 (1967).Google Scholar
  19. 19.
    Suzuki, A., N. F. H. Ho, W. I. Higuchi, J. Coll. Interface Sci.29, 552 (1969).Google Scholar
  20. 20.
    Bowen, B. P., N. Epstein, J. Coll. Interface Sci.72, 81 (1979).Google Scholar
  21. 21.
    Rajagopalan, R., R. Q. Chu, J. Coll. Interface Sci.86, 299 (1982).Google Scholar
  22. 22.
    Czarnecki, J., T. Dabroś, J. Coll. Interface Sci.78, 25 (1980).Google Scholar
  23. 23.
    Matijevic, E., R. J. Kuo, H. Kolny, J. Coll. Interface Sci.80, 94 (1981).Google Scholar
  24. 24.
    Bartenev, G. M., The Structure and Mechanical Properties of Inorganic Glasses, Wolters-Noordhoff Publishing, Groningen 1970.Google Scholar
  25. 25.
    Marshall, J. K., J. A. Kitchener, J. Coll. Interface Sci.22, 342 (1966).Google Scholar
  26. 26.
    Madras, P. N., W. A. Morton, H. L. Petschek, Federation Proc.30 (5) 1665 (1971).Google Scholar

Copyright information

© Steinkopff 1983

Authors and Affiliations

  • T. Dabroś
    • 1
    • 2
  • T. G. M. van de Ven
    • 1
    • 2
  1. 1.Pulp and Paper Research Institute of CanadaCanada
  2. 2.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations