Advertisement

Zeitschrift für Physik A Atoms and Nuclei

, Volume 322, Issue 1, pp 49–57 | Cite as

The combined influence of the Pauli principle and saturation on the effectiveα andα α interactions

  • G. Spitz
  • H. Klar
  • E. W. Schmid
Nuclei

Abstract

The recently developed fish bone optical model with saturation has been applied tonα. andαα scattering. Short ranged nucleon-nucleon correlations, which are responsible for nuclear saturation, have an influence both on the local potential part and on the exchange potential. The local potential becomes less attractive in the inner region and steeper in the surface region; it is better represented by a Woods Saxon shape than by a gaussian. A modification of the exchange potential is caused by the effect of short range correlations on the resonating group norm kernel. It is seen that short ranged nucleonnucleon correlations have no dramatic effect on two-cluster optical potentials. The present calculations rather support conventional phenomenological approaches. Together with older results one may conclude that, in multicluster systems, saturation is predominantly carried by three- and multicluster forces.

PACS

21.60.Gx 25.10.+s 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saito, S., Akaishi, Y., Klar, H., Nakaichi-Meada, S., Schmid, E.W., Spitz, G.: Z. Phys. A — Atoms and Nuclei320, 399 (1985)Google Scholar
  2. 2.
    Nakaichi-Maeda, S., Schmid, E.W.: Z. Phys. A — Atoms and Nuclei315, 287 (1984)Google Scholar
  3. 3.
    Tang, Y.C., Schmid, E.W., Herndon, R.C.: Nucl. Phys.65, 203 (1965)Google Scholar
  4. 4.
    Tanaka, H., Nagata, H.: Prog. Theor. Phys. Suppl.56, 121 (1974)Google Scholar
  5. 5.
    Schmid, E.W.: Nucl. Phys. A416, 379c (1984)Google Scholar
  6. 6.
    Spitz, G.: Ph. D. thesis, Tübingen 1984Google Scholar
  7. 7.
    Zaikin, D.A.: Nucl. Phys. A170, 584 (1971)Google Scholar
  8. 8.
    Fliessbach, T., Walliser, H.: Nucl. Phys. A377, 84 (1982)Google Scholar
  9. 8a.
    Walliser, H., Fliessbach, T.: Nucl. Phys. A394, 387 (1983)Google Scholar
  10. 8b.
    Weiguny, A.: Fizika9, Suppl. 3, 115 (1977)Google Scholar
  11. 9.
    Bond, J.E., Firk, F.W.K.: Nucl. Phys. A287, 317 (1977)Google Scholar
  12. 10.
    Lassaut, M., Vinh Mau, N.: Nucl. Phys. A349, 372 (1980)Google Scholar
  13. 11.
    Sprung, D., Banerjee, P.K.: Nucl. Phys. A168, 273 (1971)Google Scholar
  14. 12.
    Afzal, S.A., Ahmad, A.A.Z., Ali, S.: Rev. Mod. Phys.41, 247 (1969)Google Scholar
  15. 13.
    Chien, W.S., Brown, R.E.: Phys. Rev. C10, 1767 (1974)Google Scholar
  16. 14.
    Ajzenberg-Selove, F.: Nucl. Phys. A320, 1 (1978)Google Scholar
  17. 15.
    Kircher, R.: Ph. D. thesis, Tübingen 1981Google Scholar
  18. 16.
    Ali, S., Bodmer, A.R.: Nucl. Phys.80, 99 (1966)Google Scholar
  19. 17.
    Schmid, E.W., Orlowski, M., Bao, Cheng-guang: Z. Phys. A -Atoms and Nuclei308, 237 (1982)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • G. Spitz
    • 1
  • H. Klar
    • 1
  • E. W. Schmid
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenFederal Republic of Germany

Personalised recommendations