Zeitschrift für Physik C Particles and Fields

, Volume 63, Issue 2, pp 357–362

Braided matrix structure ofq-Minkowski space andq-Poincaré group

  • S. Majid
  • U. Meyer
Article

Abstract

We clarify the relation between the approach toq-Minkowski space of Carow-Watamura et al. with an approach based on the idea of 2×2 braided Hermitean matrices. The latter are objects like super-matrices but with Bose-Fermi statistics replaced by braid statistics. We also obtain new R-matrix formulae for theq-Poincaré group in this framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Carow-Watamura, M. Schlieker, M. Scholl, S. Watamura: Z. Phys. C 48 (1990) 159Google Scholar
  2. 2.
    U. Carow-Watamura, M. Schlieker, M. Scholl, S. Watamura: Int. J. Mod. Phys. A 6 (1991) 3081Google Scholar
  3. 3.
    O. Ogievetsky, W.B. Schmidke, J. Wess, B. Zumino: Commun. Math. Phys. 150 (1992) 495Google Scholar
  4. 4.
    S. Majid: In: M.-L. Ge, H.J. de Vega (eds.) Quantum groups, integrable statistical models and knot theory, p. 231–282. Singapore: World Scientific 1993Google Scholar
  5. 5.
    S. Majid: J. Math. Phys. 32 (1991) 3246Google Scholar
  6. 6.
    S. Majid: J. Geom. Phys. 13 (1994) 169Google Scholar
  7. 7.
    U. Meyer: q-Lorentz group and braided coaddition on q-Minkowski; space, preprint, DAMTP/93-45, 1993Google Scholar
  8. 8.
    S. Majid: J. Math. Phys. 34 (1993) 2045Google Scholar
  9. 9.
    S. Majid: J. Math. Phys. 34 (1993) 1176Google Scholar
  10. 10.
    S. Majid: Commun. Math. Phys. 156 (1993) 607Google Scholar
  11. 11.
    N. Yu. Reshetikhin, M.A. Semenov-Tian-Shansky: Lett. Math. Phys. 19 (1990) 133Google Scholar
  12. 12.
    L.D. Faddeev, N. Yu. Reshetikhin, L.A. Takhtajan: Leningrad Math J. (1990) 193Google Scholar
  13. 13.
    M. Schlieker, W. Weich, R. Weixler: Z. Phys. C 53 (1992) 79Google Scholar
  14. 14.
    S. Majid: J. Math. Phys. 34 (1993) 4843Google Scholar
  15. 15.
    S. Majid: Isr. J. Math. 72 (1990) 133Google Scholar
  16. 16.
    N. Yu. Reshetikhin, M.A. Semenov-Tian-Shansky: J. Geom. Phys. 5 (1988) 533Google Scholar
  17. 17.
    V.G. Drinfeld: Quantum groups. In: A. Gleason (ed.): Proceedings of the ICM, p. 798–820, Rhode Island, 1987. AMSGoogle Scholar
  18. 18.
    P. Podleś, S.L. Woronowicz: Commun. Math. Phys. 130 (1990) 381Google Scholar
  19. 19.
    S. Majid: Quantum and braided Lie algebras, to appear in J. Geom. Phys.Google Scholar
  20. 20.
    S. Majid: Lie algebras and braided geometry, to appear in: Proc. XXII's DGM, Ixtapa, Mexico 1993Google Scholar
  21. 21.
    T. Brzeziński, S. Majid: Commun. Math. Phys. 157 (1993) 591Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Majid
    • 1
  • U. Meyer
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations