The general three-vertex, BRS identities and renormalizability of the light-cone gauge

  • H. C. Lee
  • M. S. Milgram
  • A. Andrasi
Article

Abstract

The general one-loop three-vertexГ μeλ abc (p, q, r) in the four-component formulation of the Yang-Mills theory is calculated in the light-cone gauge. The nonvanishing counter Lagrangian constructed from this three-vertex and the self-energy is proportional to the original Lagrangian, the single renormalization constant being -11g2CYMГ(2−ω)/48π2. Gauge dependent and nonlocal counterterms do not contribute to the renormalization constant, but are needed to verify the appropriate Slavnov-Taylor (ST) and Becchi-Rouet-Stora (BRS) identities.

Keywords

Field Theory Elementary Particle Quantum Field Theory Particle Acceleration Renormalization Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Cornwall: Phys. Rev.D10, 500 (1974); J. Scherk, J.H. Schwarz: Gen. Rel. Grav.6, 537 (1975); M. Kaku: Nucl. Phys.B91, 99 (1975); H.C. Lee, M.S. Milgram: Phys. Lett.133B, 320 (1983); M. Ögren: Univ. Göteborg preprint, 84-15; G. Leibbrandt, S.L. Nyeo: Phys. Lett.140B, 417 (1984); D.M. Capper, J.J. Dulwich, M.J. Litvak: Nucl. Phys.B241, 463 (1984); G. Leibbrandt, T. Matsuki: Phys. Rev.D31, 934 (1985); A. Bassetto et al.: Phys. Rev.D31, 2013 (1985); D.M. Capper, D.R.T. Jones: Phys. Rev.D31, 3295 (1985); D.M. Capper, D.R.T. Jones, A.T. Suzuki: QMC-85-9; A. Smith: Berkeley preprint, LBL-18668 (revised); A. Andrasi, G. Leibbrandt, S.-L. Nyeo: Guelph preprint Math. Sr. 1985-100Google Scholar
  2. 2.
    J. Scherk, J.H. Schwarz, Gen. Rel. Grav.6, 537 (1975); M. Kaku: [1] Nucl. Phys.B91, 99 (1975)Google Scholar
  3. 3.
    L. Brink, O. Lindgren, B.E.W. Nilsson: Nucl. Phys.B212, 401 (1983); S. Mandelstam: Nucl. Phys.B213, 1493 (1983)Google Scholar
  4. 4.
    S. Randjbar-Daemi, A. Salam, J. Strathdee: Nuovo Cimento84B, 167 (1984); S. Randjbar-Daemi, M.H. Sarmadi: Phys. Lett.151B 343 (1985)Google Scholar
  5. 5.
    M.B. Green, J.H. Schwarz: Nucl. Phys.B243, 475 (1984); T. Hori, K. Kamimura: Prog. Theo. Phys.73, 476 (1985)Google Scholar
  6. 6.
    D.M. Capper, J.J. Dulwich, M.J. Litvak:Nucl. Phys.B241, 463 (1984)[1]; G. Leibbrandt, S.L. Nyeo:[1]; Guelph preprint Math. Sr. 1985-100 H. C. Lee, M.S. Milgram: AECL report 9105 (1985)Google Scholar
  7. 7.
    S. Mandelstam:[3] Nucl. Phys.B213, 1493 (1983); G. Leibbrandt: Phys. Rev.D29, 1699 (1984)Google Scholar
  8. 8.
    H.C. Lee, M.S. Milgram: Phys. Rev. Lett.55, 2122 (1985); Nucl. Phys.B268, 543 (1986)Google Scholar
  9. 9.
    J.C. Taylor: Nucl. Phys.B33, 436 (1971); A. Slavnov: Theor. Mat. Phys.10, 99 (1972)Google Scholar
  10. 10.
    C. Becchi, A. Rouet, R. Stora: Ann. Phys.98, 287 (1976)Google Scholar
  11. 11.
    A. Andrasi, G. Leibbrandt, S.-L. Nyeo: Guelph preprint, Math. Sr. 1985-100; G. Leibbrandt, S.-L. Nyeo: Z. Phys. C—Particles and Fields30, 501 (1986)Google Scholar
  12. 12.
    M. Dalbosco: Phys. Lett.163B, 181 (1985)Google Scholar
  13. 13.
    R.P. Feynman: Acta Phys. Pol.24, 697 (1963); L.D. Faddeev, V.N. Popov: Phys. Lett.15B, 29 (1967); B.S. DeWit: Phys. Rev.160, 1113 (1967);162, 1195 (1967)Google Scholar
  14. 14.
    A. Bassetto, M. Dalbosco, R. Soldati: Phys. Lett.159B, 311 (1985)Google Scholar
  15. 15.
    H.C. Lee, M.S. Milgram: Z. Phys. C — Particles and Fields28, 579 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. C. Lee
    • 1
  • M. S. Milgram
    • 2
  • A. Andrasi
    • 3
  1. 1.Theoretical Physics BranchAtomic Energy of Canada Limited, Chalk River Nuclear LaboratoriesChalk RiverCanada
  2. 2.Applied Mathematics BranchAtomic Energy of Canada Limited, Chalk River Nuclear LaboratoriesChalk RiverCanada
  3. 3.“Ruder Boskovic” InstituteZagrebCroatia, Yugoslavia

Personalised recommendations