Advertisement

Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV

  • UA5 Collaboration
  • G. J. Alner
  • R. E. Ansorge
  • B. Åsman
  • C. N. Booth
  • L. Burow
  • P. Carlson
  • R. S. DeWolf
  • A. Drees
  • B. Eckart
  • G. Ekspong
  • I. Evangelou
  • A. Eyring
  • J. -P. Fabre
  • C. Fuglesang
  • J. Gaudaen
  • C. Geich-Gimbel
  • B. Holl
  • R. Hospes
  • D. P. Johnson
  • K. Jon-And
  • F. Lotse
  • N. Manthos
  • R. Meinke
  • D. J. Munday
  • J. E. V. Ovens
  • W. Pelzer
  • J. J. Reidy
  • J. C. Rushbrooke
  • H. Schmickler
  • F. Triantis
  • L. Van hamme
  • C. Walck
  • C. P. Ward
  • D. R. Ward
  • C. J. S. Webber
  • T. O. White
  • G. Wilquet
  • N. Yamdagni
Article

Abstract

New data are presented on charged particle pseudorapidity distributions for inelastic events produced at c.m. energies\(\sqrt s \)=200 and 900 GeV. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode. The rise of the central density ρ(0) at energies up to\(\sqrt s \)=900 GeV has been studied. A new form of central region scaling is found involving the densityρ n (0) for charged multiplicityn, namely that the scaled central densityρ n (0)/ρ(0) expressed as a function ofz=n/〈n〉 is independent ofs. Scaling in the fragmentation region holds to 10–20%, and the small amount of scalebreaking observed here could be accommodated within the framework suggested by Wdowcyk and Wolfendale to account for both accelerator and cosmic ray data.

Keywords

Field Theory Elementary Particle Quantum Field Theory Central Region Charged Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Alner et al.: Phys. Lett.107 B, 310 (1981)Google Scholar
  2. 2.
    G. Arnison et al.: Phys. Lett.123 B, 108 (1982)Google Scholar
  3. 3.
    R.P. Feynman: Phys. Rev. Lett.23, 1415 (1969)Google Scholar
  4. 4.
    J. Wdowczyk, A.W. Wolfendale: Nature306, 347 (1983); J. Phys.G10, 257 (1983), and references thereinGoogle Scholar
  5. 5.
    T.K. Gaisser: Phys. Lett.100 B, 425 (1981)Google Scholar
  6. 6.
    G.J. Alner et al.: Phys. C — Particles and Fields32, 153 (1986)Google Scholar
  7. 7.
    K. Alpgård et al.: Phys. Lett121 B, 209 (1983);Google Scholar
  8. 7a.
    G.J. Alner et al.: Phys. Lett.138 B, 304 (1984)Google Scholar
  9. 8.
    G.J. Alner et al.: to be submitted to Phys. Rep.Google Scholar
  10. 9.
    G.J. Alner et al.: Phys. Lett.167 B, 476 (1986)Google Scholar
  11. 10.
    D.R. Ward: Proc. of the 3rd Topical Workshop on Proton-Antiproton Collider Physics, Rome 1983, in CERN 83-04, p. 75Google Scholar
  12. 11.
    G.J. Alner et al.: Nucl. Phys.B258, 505 (1985)Google Scholar
  13. 12.
    K. Alpgård et al.: Phys. Lett.107 B, 315 (1981)Google Scholar
  14. 13.
    G.J. Alner et al.: Phys. Lett.151 B, 309 (1985)Google Scholar
  15. 14.
    K. Alpgård et al.: Phys. Lett.115 B, 71 (1982)Google Scholar
  16. 15.
    G.J. Alner et al.: Phys. Lett.160 B, 199 (1985)Google Scholar
  17. 16.
    J.G. Rushbrooke: Proc. XVI Intern. Symp. on Multiparticle Dynamics 1985, Kiryat Anavim, Israel, p. 289. Singpapore World ScientificGoogle Scholar
  18. 17.
    K. Alpgård et al.: Phys. Lett.112 B, 183 (1982); A.R. Weidberg: Ph.D. Thesis, Univ. of Cambridge 1982Google Scholar
  19. 18.
    W. Thomé et al.: Nucl. Phys.B129, 365 (1977)Google Scholar
  20. 19.
    C.P. Ward et al.: Nucl. Phys.B153, 299 (1979); W.M. Morse et al.: Phys. Rev.D. 15, 66 (1977); J. Whitmore et al.: Phys. Rep.10 C, 273 (1974)Google Scholar
  21. 20.
    J. Whitmore: Phys. Rep.10 C, 273 (1974)Google Scholar
  22. 21.
    L. Foà: Phys. Rep.22C, 1 (1975)Google Scholar
  23. 22.
    J. Wdowczyk, A.W. Wolfendale: Nuovo Cimento54 A, 433 (1977)Google Scholar
  24. 23.
    J. Wdowczyk, A.W. Wolfendale: J. Phys. G.: Nucl. Phys.10, 257 (1984)Google Scholar
  25. 24.
    T.K. Gaisser, F. Halzen: Univ. of Wisconsin-Madison preprint MAD/PH/236, 1985Google Scholar
  26. 25.
    J.G. Rushbrooke: Proc. XXI. Int. Conf. on High Energy Physics, C3-177. Paris, 1982Google Scholar
  27. 26.
    A.M. Rossi et al: Nucl. Phys.B84, 269 (1975) and references thereinGoogle Scholar
  28. 27.
    F. Ceradini: Proc. of Int. Europhysics Conf. on High Energy Physics, p. 363. Bari, 1985Google Scholar
  29. 28.
    G.N. Fowler et al.: Phys. Lett.145 B, 407 (1984); Phys. Rev. Lett.55, 173 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • UA5 Collaboration
  • G. J. Alner
    • 3
  • R. E. Ansorge
    • 3
  • B. Åsman
    • 5
  • C. N. Booth
    • 3
  • L. Burow
    • 1
  • P. Carlson
    • 5
  • R. S. DeWolf
    • 3
  • A. Drees
    • 1
  • B. Eckart
    • 1
  • G. Ekspong
    • 5
  • I. Evangelou
    • 4
  • A. Eyring
    • 1
  • J. -P. Fabre
    • 4
  • C. Fuglesang
    • 5
  • J. Gaudaen
    • 2
  • C. Geich-Gimbel
    • 1
  • B. Holl
    • 1
  • R. Hospes
    • 1
  • D. P. Johnson
    • 2
  • K. Jon-And
    • 5
  • F. Lotse
    • 5
  • N. Manthos
    • 4
  • R. Meinke
    • 1
  • D. J. Munday
    • 3
  • J. E. V. Ovens
    • 3
  • W. Pelzer
    • 1
  • J. J. Reidy
    • 4
  • J. C. Rushbrooke
    • 3
  • H. Schmickler
    • 1
  • F. Triantis
    • 4
  • L. Van hamme
    • 2
  • C. Walck
    • 5
  • C. P. Ward
    • 3
  • D. R. Ward
    • 3
  • C. J. S. Webber
    • 3
  • T. O. White
    • 3
  • G. Wilquet
    • 2
  • N. Yamdagni
    • 5
  1. 1.Physikalisches Institut der UniversitätBonnFederal Republic of Germany
  2. 2.Inter-University Institute for High Energies (ULB-VUB)BrusselsBelgium
  3. 3.Cavendish LaboratoryDepartment of Physics, UniversityCambridgeUK
  4. 4.CERNGenevaSwitzerland
  5. 5.Institute of Physics, UniversityStockholmSweden

Personalised recommendations