Advertisement

Inventiones mathematicae

, Volume 93, Issue 3, pp 667–700 | Cite as

On the coefficients of Drinfeld modular forms

  • Ernst-Ulrich Gekeler
Article

Keywords

Modular Form Drinfeld Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlitz, L.: An analogue of the Staudt-Clausen theorem. Duke Math. J.3, 503–517 (1937) and7, 62–67 (1940)Google Scholar
  2. 2.
    Drinfeld, V.G.: Elliptic Modules (Russian). Math. Sbornik94, 594–627 (1974) English Translation: Math. USSR-Sbornik23, 561–592 (1976)Google Scholar
  3. 3.
    Fresnel, J., Put, M. van der: Géométrie Analytique Rigide et Applications. Progr. Math.18, Basel Boston: Birkhäuser, 1981Google Scholar
  4. 4.
    Gekeler, E.-U.: Zur Arithmetik von Drinfeld-Moduln. Math. Ann.262, 167–182 (1983)Google Scholar
  5. 5.
    Gekeler, E.-U.: A Product Expansion for the Discriminant Function of Drinfeld Modules of Rank Two. J. Number Theory21, 135–140 (1985)Google Scholar
  6. 6.
    Gekeler, E.-U.: Modulare Einheiten für Funktionenkörper. J. Reine Angew. Math.348, 94–115 (1984)Google Scholar
  7. 7.
    Gekeler, E.-U.: Drinfeld Modular Curves (Lect. Notes Math., vol. 1231) Berlin Heidelberg New York: Springer, 1986Google Scholar
  8. 8.
    Gerritzen, L., Put, H. van der: Schottky Groups and Mumford Curves (Lect. Notes Math., vol. 817) Berlin Heidelberg New York: Springer, 1980Google Scholar
  9. 9.
    Goss, D.: Von Staudt forF q[T]. Duke Math. J.45, 885–910 (1978)Google Scholar
  10. 10.
    Goss, D.: π-adic Eisenstein Series for Function Fields. Comp. Math.41, 3–38 (1980)Google Scholar
  11. 11.
    Goss, D.: Modular Forms forF r[T]. J. Reine Angew. Math.317, 16–39 (1980)Google Scholar
  12. 12.
    Goss, D.: The Algebraist's Upper Half-Plane. Bull. Am. Math. Soc. NS2, 391–415 (1980)Google Scholar
  13. 13.
    Hayes, D.: Explicit class field theory for rational function fields. Trans. Am. Math. Soc.189, 77–91 (1974)Google Scholar
  14. 14.
    Igusa, J.: On the algebraic theory of elliptic modular functions. J. Math. Soc. Jpn20, 96–106 (1968)Google Scholar
  15. 15.
    Katz, N.: Higher congruences between modular forms. Ann. Math.101, 332–367 (1975)Google Scholar
  16. 16.
    Lang, S.: Introduction to Modular Forms. Berlin Heidelberg New York: Springer, 1976Google Scholar
  17. 17.
    Radtke, W.: Diskontinuierliche arithmetische Gruppen im Funktionenkörperfall. J. Reine Angew. Math.363, 191–200 (1985)Google Scholar
  18. 18.
    Swinnerton-Dyer, H.P.F.: Onl-adic representations and congruences for coefficients of modular forms (Lect. Notes Math., vol. 350, pp. 1–55) Berlin Heidelberg New York: Springer, 1973Google Scholar
  19. 19.
    Yu, J.: Transcendence and Drinfeld Modules. Invent. Math.83, 507–517 (1986)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Ernst-Ulrich Gekeler
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3FRG

Personalised recommendations