Inventiones mathematicae

, Volume 93, Issue 3, pp 557–607 | Cite as

Topological components of spaces of representations

  • William M. Goldman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuckrow, V.: On Schottky groups with applications to Kleinian groups. Ann. Math.88, 47–61 (1968)Google Scholar
  2. 2.
    Culler, M.: Lifting representations to covering groups. Adv. Math.59, 64–70 (1986)Google Scholar
  3. 3.
    Culler, M., Shalen, P.B.: Varieties of group representations and splittings of 3-manifolds. Ann. Math.117, 109–146 (1983)Google Scholar
  4. 4.
    Eisenbud, D., Hirsch, U., Neumann, W.: Transverse foliations of seifert bundles and self homeomorphisms of the circle. Comment. Math. Helv.56, 638–660 (1981)Google Scholar
  5. 5.
    Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Funktionen, vol. 1. Stuttgart: B.G. Teubner 1897Google Scholar
  6. 6.
    Fried, D.: Word maps, isotopy and entropy. Trans. Am. Math. Soc.296, 851–859 (1986)Google Scholar
  7. 7.
    Ghys, E.: Classe d'Euler et minimale exceptionel. Topology26, 93–105 (1987)Google Scholar
  8. 8.
    Goldman, W.: Discontinuous groups and the Euler class. Doctoral thesis, University of California, Berkeley (1980)Google Scholar
  9. 9.
    Goldman, W.: Flat bundles with solvable holonomy II: Obstruction theory. Proc. Am. Math. Soc.83, 175–178 (1981)Google Scholar
  10. 10.
    Goldman, W.: Characteristic classes and representations of discrete subgroups of Lie groups. Bull. Am. Math. Soc. (New Series)6, 91–94 (1982)Google Scholar
  11. 11.
    Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math.54, 200–225 (1984)Google Scholar
  12. 12.
    Goldman, W.: Representations of fundamental groups of surfaces. In: Geometry and topology, Proceedings, University of Maryland 1983–1984. Alexander, J., Harer, J. (eds.), (Lecture Notes in Mathematics, Vol. 1167, pp. 95–117). Berlin-Heidelberg-New York: Springer 1985Google Scholar
  13. 13.
    Goldman, W.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math.85, 263–302 (1986)Google Scholar
  14. 14.
    Goldman, W.: Projective structures with Fuchsian holonomy. J. Differ. Geom.25, 297–326 (1987)Google Scholar
  15. 15.
    Goldman, W.: Convex real projective structures on compact surfaces. J. Differ. Geom. (submitted)Google Scholar
  16. 16.
    Goldman, W.: Geometric structures and varieties of representations. In: The geometry of group representations, Goldman, W., Magid, A. (eds.). Contemp. Math. (to appear)Google Scholar
  17. 17.
    Goldman, W., Millson, J.J.: Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math.88, 495–520 (1987)Google Scholar
  18. 18.
    Goldman, W., Millson, J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publ. Math. I.H.E.S. (to appear)Google Scholar
  19. 19.
    Haefliger, A., Quach Ngoc Du, Appendice: Une présentation du groupe fundamental d'une orbifold. In: Structure transverse des feuilletages, Astérisque116, pp. 98–107, Société Mathématique de France, 1984Google Scholar
  20. 20.
    Harvey, W.: Spaces of discrete groups. In: Discrete groups and automorphic functions, Proceedings of a NATO Advanced Study Institute, pp. 295–348. London-New York-San Fancisco: Academic Press 1977Google Scholar
  21. 21.
    Hironaka, H.: Triangulations of algebraic sets. In: Algebraic geometry — Arcata 1974, Proceedings of Symposia in Pure Mathematics, vol. 29, pp. 165–185. American Mathematical Society, Providence, Rhode Island 1975Google Scholar
  22. 22.
    Hitchin, N.J.: The self-duality equations on Riemann surfaces. Proc. Lond. Math. Soc.55, 59–126 (1987)Google Scholar
  23. 23.
    Hirzebruch, F.: Topological methods in algebraic geometry. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  24. 24.
    Jankins, M.: The space of homeomorphisms from a Fuchsian group toPSL(2,R). Doctoral dissertation, University of Maryland 1983Google Scholar
  25. 25.
    Jankins, M., Neumann, W.: Homomorphisms of Fuchsian groups toPSL(2,R). Comment. Math. Helv.60, 480–495 (1985)Google Scholar
  26. 26.
    Kulkarni, R., Raymond, F.: 3-Dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom.21, 231–268 (1985)Google Scholar
  27. 27.
    Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc.336 (1985)Google Scholar
  28. 28.
    Magnus, W.: The uses of 2 by 2 matrices in combinatorial group theory. A survey. Result. Math.4, 171–192 (1981)Google Scholar
  29. 29.
    Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z.170, 91–103 (1980)Google Scholar
  30. 30.
    Matsumoto, S.: Some remarks on foliatedS 1-bundles. Invent. Math.90, 343–358 (1987)Google Scholar
  31. 31.
    Milnor, J.W.: On the existence of a connection with curvature zero. Comment. Math. Helv.32, 215–223 (1958)Google Scholar
  32. 32.
    Morgan, J.W., Shalen, P.B.: Valuations, trees and degenerations of hyperbolic structures I. Ann. Math.120, 401–476 (1984)Google Scholar
  33. 33.
    Newstead, P.E.: Topological properties of some spaces of stable bundles. Topology6, 241–267 (1967)Google Scholar
  34. 34.
    Riley, R.: Holomorphically parametrized families of subgroups ofSL(2,C). Mathematika32, 248–264 (1985)Google Scholar
  35. 35.
    Steenrod, N.E.: The topology of Fiber bundles. Princeton Univ. Press 1951Google Scholar
  36. 36.
    Sullivan, D.: Quasiconformal homeomorphisms and dynamics, II: Structural stability implies hyperbolicity. Acta Math.155, 244–260 (1986)Google Scholar
  37. 37.
    Thurston, W.P.: The geometry and topology of 3-manifolds. Princeton Univ. Press (to appear)Google Scholar
  38. 38.
    Toledo, D.: Representations of surface groups in ≦PSU(n, 1) with maximum characteristic number. J. Differ. Geom. (in press) (1988)Google Scholar
  39. 39.
    Weil, A.: On discrete subgroups of Lie groups. Ann. Math.72, 369–384 (1960);75, 578–602 (1962)Google Scholar
  40. 40.
    Whitney, H.: Elementary structure of real algebraic varieties. Ann. Math.66, 545–556 (1957)Google Scholar
  41. 41.
    Wood, J.W.: Bundles with totally disconnected structure group. Comment. Math. Helv.51, 183–199 (1971)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • William M. Goldman
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations