Advertisement

Inventiones mathematicae

, Volume 50, Issue 3, pp 249–272 | Cite as

On the index of Toeplitz operators of several complex variables

  • Louis Boutet de Monvel
Article

Abstract

Toeplitz operators on strictly pseudo-convex boundaries of complex domains are defined; they behave like pseudo-differential operators. An extension of the Atiyah-Singer formula is proved for elliptic systems of such operators.

Keywords

Complex Variable Toeplitz Operator Elliptic System Complex Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.:K-Theory. Amsterdam: Benjamin 1967Google Scholar
  2. 2.
    Atiyah, M.F., and Singer, I.M.: The index of elliptic operators I. Ann. Math.87, 484–530 (1968)Google Scholar
  3. 3.
    Atiyah, M., and Singer, I.M.: The index of elliptic operators III. Ann. Math.87, 546–604 (1968)Google Scholar
  4. 4.
    Atiyah, M.F., and Singer, I.M.: The index of elliptic operators IV. Ann. Math.92, 119–138 (1970)Google Scholar
  5. 5.
    Bony, J.M., and Schapira, P.: Existence et prolongement des solutions holomorphes des equations aux derivées partielles. Inventiones Math.17, 95–105 (1972)Google Scholar
  6. 6.
    Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math.126, 11–51 (1971)Google Scholar
  7. 7.
    Boutet de Monvel, L.: Integration des equations de Cauchy-Riemann induites. Seminaire Goulaouic-Schwartz. 1974–75 exposé no 9Google Scholar
  8. 8.
    Boutet de Monvel, L.: Hypoelliptic operators with Double characteristics and related pseudodifferential operators. Comm. Pure Appl. Math.27, 585–639 (1974)Google Scholar
  9. 9.
    Boutet de Monvel, L., and Guillemin, V.: Spectral theory of Toeplitz operators. To appear.Google Scholar
  10. 10.
    Boutet de Monvel, L., and Sjöstrand, J.: Sur la singularité des noyaux de Bergmann et de Szegö. Asterisque34–35, 123–164 (1976)Google Scholar
  11. 11.
    Burns, D.: On Venugopalkrishna's index problem. Rencontre sur l'analyse complexe à plusiems variable et les systèmes surdeterminés, Montreal 1975.Google Scholar
  12. 12.
    Dynin, A.S.: An Algebra of pseudo-differential operators on the Heisenberg group. Dokl. Akad. Nauk SSSR 227 (1976) no 4. Soviet Math. Dokl.17, no 2, 508–512 (1976)Google Scholar
  13. 13.
    Fedosov, B.V.: Analytical formulas for the index of elliptic operators. Trudy Moskov. Mat. Obsc.30 (1974), Transactions Mosc. Math. Soc.30, 159–240 (1974)Google Scholar
  14. 14.
    Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann.135, 263–273 (1958)Google Scholar
  15. 15.
    Guillemin, V.: Symplectic spinors and partial Differential equations. Coll. Int. CNRS no 237 Géométrie symplectique et physique mathemtique, 217–252Google Scholar
  16. 16.
    Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)Google Scholar
  17. 17.
    Hörmander, L.: The Weyl calculus of pseudo-differential operators. To appearGoogle Scholar
  18. 18.
    Kashiwara, M.: Analyse microlocale du noyau de Bergman. Seminaire Goulaouic-Schwartz 1976–1977, exp. no8Google Scholar
  19. 19.
    Kohn, J.J.: Regularity at the boundary of the\(\bar \partial \) Neumann problem. Proc. Nat. Acad. Sci. USA49, 206–213 (1963)Google Scholar
  20. 20.
    Melin, A., Sjöstrand, J.: Fourier integral operators with complex valued phase functions — in Fourier integral operators and partial differential equations, Lecture Notes no 459, pp. 120–223. Berlin-Göttingen-Heidelberg: Springer 1975Google Scholar
  21. 21.
    K-Theory and operator algebras, Lecture Notes no575. Berlin-Heidelberg New York: Springer 1977Google Scholar
  22. 22.
    Sato, M., Kawai, T., Kashiwara, M.: Mikrofunctions and pseudo-differential equations, Lecture Notes no 287, Chap. II. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  23. 23.
    Venugopalkrishna, V.: Fredholm operators associated with strongly pseudoconvex domains in ℂn. J. Funct. Anal.9, 349–373 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Louis Boutet de Monvel
    • 1
  1. 1.Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations