Numerische Mathematik

, Volume 39, Issue 3, pp 351–360 | Cite as

Quadrature formulas for oscillatory integral transforms

Error Estimation in Coefficients of Exponential Sums and Polynomials

Summary

Quadrature formulas are obtained for the Fourier and Bessel transforms which correspond to the well-known Gauss-Laguerre formula for the Laplace transform. These formulas provide effective asymptotic approximations, complete with error bounds. Comparison is also made between the quadrature formulas and the asymptotic expansions of these transforms.

Subject Classifications

AMS: 65D30, 65R10 CR: 5.16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, A., Stegun, I.B.: Handbook of Mathematical Functions. NBS Appl. Math. Series 53, Washington DC 1964Google Scholar
  2. 2.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. New York: Academic Press 1975MATHGoogle Scholar
  3. 3.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions. Vol. 2, New York: McGraw-Hill 1953MATHGoogle Scholar
  4. 4.
    Gautschi, W.: Efficient computation of the complex error function. SIAM J. Numer. Anal.7, 187–198 (1970)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gautschi, W.: On Generating Orthogonal Polynomials. SIAM J. Scientific Statistical Comput. (to appear)Google Scholar
  6. 6.
    Hildebrand, F.B.: Introduction to Numerical Analysis. 2nd ed., New York: McGraw-Hill, 1974MATHGoogle Scholar
  7. 7.
    Krylov, V.I., Kruglikova, L.G.: A Handbook on Numerical Harmonic Analysis. (Russian). Izdat “Nauka i Tehnika”, Minsk, 1968 [English translation by Israel Progr. Sci. Transl. Jerusalem 1969]MATHGoogle Scholar
  8. 8.
    Olver, F.W.J.: Asymptotics and Special Functions. New York: Academic Press, 1974MATHGoogle Scholar
  9. 9.
    Rabinowitz, P., Weiss, G.: Tables of abscissas and weights for numerical evaluation of integrals of the form\(\int\limits_0^\infty{e^{ - x} x^n f(x)dx} \), MTAC,13, 285–294 (1959)MathSciNetMATHGoogle Scholar
  10. 10.
    Shao, T.S., Chen, T.C., Frank, R.M.: Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials. Math. Comput.18, 598–616 (1964)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev.23, 165–224 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Stenger, F.: The asymptotic approximation of certain integrals. SIAM J. Math. Anal.1, 392–404 (1970)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Szegö, G.: Orthogonal Polynomials. Colloquium Publication, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I. 1975Google Scholar
  14. 14.
    Ting, B.Y., Luke, Y.L.: Computation of integrals with oscillatory and singular integrands. Math. Comput.37, 169–183 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Titchmarch, E.C.: The Theory of Functions. 2nd ed., Oxford, London, New York: University Press 1939Google Scholar
  16. 16.
    Todd, J.: Evaluation of the exponential integral for large complex arguments. J. Res. Nat. Bur. Standards.52, 313–317 (1954)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Weber, H.: Numerical Computation of the Fourier Transform Using Laguerre Functions and the Fast Fourier Transform. Numer. Math.36, 197–209 (1981)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Widder, D.V.: The Laplace Transform. Princeton: University Press, 1941MATHGoogle Scholar
  19. 19.
    Wong, R.: Error Bounds for asymptotic expansions of Hankel transforms. SIAM J. Math. Anal.7, 799–808 (1976)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. Wong
    • 1
  1. 1.Department of MathematicsUniversity of ManitobaWinnipegCanada

Personalised recommendations