Inventiones mathematicae

, Volume 55, Issue 3, pp 207–240 | Cite as

On the arithmetic of special values ofL functions

  • B. Mazur
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birch, B.J.: Elliptic curves, a progress report. Proceedings of the 1969 Summer Institute on Number Theory, Stoney Brook, New York AMS, pp. 396–400, 1971Google Scholar
  2. 2.
    Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory. London-New York: Academic Press 1967Google Scholar
  3. 3.
    Deligne, P., Rapoport, M.: Schémas de modules des courbes elliptiques. Vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972). Lecture Notes in Mathematics349. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  4. 4.
    Ferrero, B., Greenberg, R.: On the behavior ofp-acidL-functions ats=0. Invent. Math.,50, 91–102 (1978)Google Scholar
  5. 5.
    Ferrero, B., Washington, L.: The Iwasawa invariantμ p vanishes for abelian number fields. Annals of Math.,109, 377–395 (1979)Google Scholar
  6. 6.
    Goldfeld, D., Viola, C.: Mean values ofL-functions associated to elliptic, Fermat and other curves at the centre of the critical strip. In press (1979)Google Scholar
  7. 7.
    Grothendieck, A.: Modèles de Néron et monodromie exp IX. Lecture Notes in Mathematics288, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  8. 8.
    Manin, Y.: Parabolic points and zeta functions of modular forms [in Russian], Izv. Akad. Nauk. CCCP,36, 19–65 (1972)Google Scholar
  9. 9.
    Mazur, B.: Courbes elliptiques et symboles modulaires. Séminaire Bourbaki, No. 414, Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. 10.
    Mazur, B.: Rational points on abelian varieties with values in towers of number fields, Inventiones Math.,18, 183–266 (1972)Google Scholar
  11. 11.
    Mazur, B.: Rational points on modular curves. Proceedings of a conference on modular functions held in Bonn 1976. Lecture Notes in Math.,601, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  12. 12.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S.47, 33–189 (1977)Google Scholar
  13. 13.
    Mazur, B.: Rational Isogenies of Prime Degree. Inventiones Math.,14, 129–162 (1978)Google Scholar
  14. 14.
    Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Inventiones Math.25, 1–61 (1974)Google Scholar
  15. 15.
    Rademacher, H.: Topics in Analytic Number Theory. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  16. 16.
    Rademacher, H.: Collected Papers, Volume I, Cambridge: M.I.T. Press 1974Google Scholar
  17. 17.
    Schoeneberg, B.: Elliptic Modular Functions. New York-Heidelberg-Berlin: Springer-Verlag 1974Google Scholar
  18. 18.
    Serre, J-P., Tate, J.: Good reduction of abelian varieties, Ann. of Math.88, 492–517 (1968)Google Scholar
  19. 19.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, No.11, Tokyo-Princeton, 1971Google Scholar
  20. 20.
    Washington, L.C.: Class numbers andZ p-extensions. Math. Ann.214, 177–193 (1975)Google Scholar
  21. 21.
    Washington, L.: The nonp-part of the class number in a cyclotomicZ p-extension. Invent. Math.,49, 87–97 (1978)Google Scholar
  22. 22.
    Wiles, A.: On modular curves and the class group ofQ(ζ p). Inventiones Math., in press (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • B. Mazur
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations