Journal of Geometry

, Volume 52, Issue 1–2, pp 25–29 | Cite as

On empty convex polytopes

  • Tibor Bisztriczky
  • Heiko Harborth
Article

Abstract

Letn andd be integers,n>d ≥ 2. We examine the smallest integerg(n,d) such that any setS of at leastg(n,d) points, in general position in Ed, containsn points which are the vertices of an empty convexd-polytopeP, that is, S∩intP = 0. In particular we show thatg(d+k, d) = d+2k−1 for 1 ≤k ≤ iLd/2rL+1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.Bisztriczky and V.Soltan: Some Erdös-Szekeres type results about points in space. Monatsh. Math. (to appear)Google Scholar
  2. [2]
    B. Grünbaum: Convex Polytopes. London-New York-Sydney, J. Wiley 1967.Google Scholar
  3. [3]
    H. Harborth: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math.33 (1978), 116–118.Google Scholar
  4. [4]
    J.D. Horton: Sets with no empty convex 7-gons. Canad. Math. Bull.26 (1983), 482–484.Google Scholar
  5. [5]
    P. Valtr: Sets inR d with no large empty convex subsets. Discrete Math.108 (1992), 115–124.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Tibor Bisztriczky
    • 1
  • Heiko Harborth
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Diskrete MathematikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations